- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某中学团委组织了“纪念抗日战争胜利73周年”的知识竞赛,从参加竞赛的学生中抽出60名学生,将其成绩(均为整数)分成六段
,
,…,
后,画出如图所示的部分频率分布直方图.观察图形给出的信息,回答下列问题:

(1)求第四组的频率,并补全这个频率分布直方图;
(2)估计这次竞赛的及格率(60分及以上为及格)和平均分(同一组中的数据用该组区间的中点值代表)




(1)求第四组的频率,并补全这个频率分布直方图;
(2)估计这次竞赛的及格率(60分及以上为及格)和平均分(同一组中的数据用该组区间的中点值代表)
在频率分布直方图中共有11个小矩形,其中中间小矩形的面积是其余小矩形面积之和的4倍,若样本容量为220,则中间小矩形对应组的频数是______.
为了解高三学生居家学习时长,从某校的调查问卷中,随机抽取
个学生的调查问卷进行分析,得到学生可接受的学习时长频率分布直方图(如图所示),已知学习时长在
的学生人数为25,则
的值为( )





A.40 | B.50 | C.60 | D.70 |
某市在创建国家级卫生城(简称“创卫”)的过程中,相关部门需了解市民对“创卫”工作的满意程度,若市民满意指数不低于0.8(注:满意指数
),“创卫”工作按原方案继续实施,否则需进一步整改.为此该部门随机调查了100位市民,根据这100位市民给“创卫”工作的满意程度评分,按以下区间:
,
,
,
,
,
分为六组,得到如图频率分布直方图:

(1)为了解部分市民给“创卫”工作评分较低的原因,该部门从评分低于60分的市民中随机选取2人进行座谈,求这2人所给的评分恰好都在
的概率;
(2)根据你所学的统计知识,判断该市“创卫”工作是否需要进一步整改,并说明理由.









(1)为了解部分市民给“创卫”工作评分较低的原因,该部门从评分低于60分的市民中随机选取2人进行座谈,求这2人所给的评分恰好都在

(2)根据你所学的统计知识,判断该市“创卫”工作是否需要进一步整改,并说明理由.
我国是世界上严重缺水的国家,城市缺水问题尤为突出,某市为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准:(单位:吨),用水量不超过
的部分按平价收费,超过
的部分按议价收费,为了了解全市市民用用水量分布情况,通过袖样,获得了100位居民某年的月用水量(单位:吨),将数据按照
,
……
分成9组,制成了如图所示的频率分布直方图.

(1)求频率分布直方图中
的值,并估计该市市民月用水量的中位数;
(2)若该市政府希望使85%的居民每月的用水量不超过标准
(吨),估计
的值,并说明理由.






(1)求频率分布直方图中

(2)若该市政府希望使85%的居民每月的用水量不超过标准


2019年“中秋节”期间,高速公路车辆较多,交警部门通过路面监控装置抽样调查某一山区路段汽车行驶速度,采用的方法是:按到达监控点先后顺序,每隔50辆抽取一辆,总共抽取120辆,分别记下其行车速度,将行车速度(
)分成七段
后得到如图所示的频率分布直方图,据图解答下列问题:

(1)求
的值,并说明交警部门采用的是什么抽样方法?
(2)求这120辆车行驶速度的众数和中位数的估计值(精确到0.1);
(3)若该路段的车速达到或超过
即视为超速行驶,试根据样本估计该路段车辆超速行驶的概率.



(1)求

(2)求这120辆车行驶速度的众数和中位数的估计值(精确到0.1);
(3)若该路段的车速达到或超过

某中学德育处为了解全校学生的上网情况,在全校随机抽取了40名学生(其中男、女生人数各占一半)进行问卷调查,并进行了统计,按男、女分为两组,再将每组学生的月上网次数分为5组:
,得到如图所示的频率分布直方图.

(1)写出女生组频率分布直方图中
的值;
(2)求抽取的40名学生中月上网次数不少于15的学生人数;
(3)在抽取的40名学生中从月上网次数不少于20的学生中随机抽取3人,并用
表示随机抽取的3人中男生的人数,求
的分布列和数学期望.


(1)写出女生组频率分布直方图中

(2)求抽取的40名学生中月上网次数不少于15的学生人数;
(3)在抽取的40名学生中从月上网次数不少于20的学生中随机抽取3人,并用


某学校共有
名学生,其中男生
人,为了解该校学生在学校的月消费情况,采取分层抽样随机抽取了
名学生进行调查,月消费金额分布在
之间.根据调查的结果绘制的学生在校月消费金额的频率分布直方图如图所示:

将月消费金额不低于
元的学生称为“高消费群”.
(1)求
的值,并估计该校学生月消费金额的平均数(同一组中的数据用该组区间的中点值作代表);
(2)现采用分层抽样的方式从月消费金额落在
,
内的两组学生中抽取
人,再从这
人中随机抽取
人,记被抽取的
名学生中属于“高消费群”的学生人数为随机变量
,求
的分布列及数学期望;
(3)若样本中属于“高消费群”的女生有
人,完成下列
列联表,并判断是否有
的把握认为该校学生属于“高消费群”与“性别”有关?

(参考公式:
,其中
)





将月消费金额不低于

(1)求

(2)现采用分层抽样的方式从月消费金额落在








(3)若样本中属于“高消费群”的女生有




(参考公式:



某校100名学生数学竞赛成绩的频率分布直方图如图所示,成绩分组区间是:
,
,
,
,
,则该次数学成绩在
内的人数为( )








A.20 | B.15 |
C.10 | D.5 |
某食品厂为了检查一条自动包装流水线的生产情况,随即抽取该流水线上40件产品作为样本算出他们的重量(单位:克)重量的分组区间为(490,
,(495,
,……(510,
,由此得到样本的频率分布直方图,如图4所示.

(1)根据频率分布直方图,求重量超过505克的产品数量.
(2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列.
(3)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率.




(1)根据频率分布直方图,求重量超过505克的产品数量.
(2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列.
(3)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率.