- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 利用焦半径公式解决直线与抛物线交点问题
- + 求直线与抛物线相交所得弦的弦长
- 抛物线中的三角形面积问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
直线y=x+1截抛物线y2=2px所得弦长为2
,此抛物线方程为( )

A.y2=2x | B.y2=6x |
C.y2=-2x或y2=6x | D.以上都不对 |
如图,过抛物线y2=2PX(P>0)的焦点F的直线与抛物线相交于M、N两点,自M、N向准线L作垂线,垂足分别为M1、N1

(Ⅰ)求证:FM1⊥FN1:
(Ⅱ)记△FMM1、、△FM1N1、△FN N1的面积分别为
,试判断S22=4S1S3是否成立,并证明你的结论。

(Ⅰ)求证:FM1⊥FN1:
(Ⅱ)记△FMM1、、△FM1N1、△FN N1的面积分别为

已知抛物线
的焦点为
,过点
作直线
与抛物线交于
、
两点,抛物线的准线与
轴交于点
.
(1)证明:
;
(2)求
的最大值,并求
取得最大值时线段
的长.








(1)证明:

(2)求


