- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 利用焦半径公式解决直线与抛物线交点问题
- + 求直线与抛物线相交所得弦的弦长
- 抛物线中的三角形面积问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知动圆过定点
,且在
轴上截得的弦长为
,记动圆圆心的轨迹为曲线
.
(1)求直线
与曲线
围成的区域面积;
(2)点
在直线
上,点
,过点
作曲线
的切线
、
,切点分别为
、
,证明:存在常数
,使得
,并求
的值.




(1)求直线


(2)点












(河南省洛阳市2018届三模)已知抛物线
,点
,
在抛物线上,且横坐标分别为
,
,抛物线
上的点
在
,
之间(不包括点
,点
),过点
作直线
的垂线,垂足为
.
(1)求直线
斜率
的取值范围;
(2)求
的最大值.














(1)求直线


(2)求
