- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 利用焦半径公式解决直线与抛物线交点问题
- + 求直线与抛物线相交所得弦的弦长
- 抛物线中的三角形面积问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
抛物线
的焦点为F,斜率为正的直线l过点F交抛物线于A、B两点,满足
.
(1)求直线l的斜率;
(2)设点
在线段
上运动,原点
关于点
的对称点为
,求四边形
的面积的最小值.


(1)求直线l的斜率;
(2)设点






已知直线y=ax+1和抛物线y2=4x相交于不同的A,B两点.
(Ⅰ)若a=-2,求弦长|AB|;
(Ⅱ)若以AB为直径的圆经过原点O,求实数a的值.
(Ⅰ)若a=-2,求弦长|AB|;
(Ⅱ)若以AB为直径的圆经过原点O,求实数a的值.
已知抛物线C:x2=2y,过点(-2,4)且斜率为k的直线l与抛物线C相交于M,N两点.
(1)若k=2,求|MN|的值;
(2)记直线l1:x-y=0与直线l2:x+y-4=0的交点为A,求kAM·kAN的值.
(1)若k=2,求|MN|的值;
(2)记直线l1:x-y=0与直线l2:x+y-4=0的交点为A,求kAM·kAN的值.
已知抛物线C:y2=2px(p>0)的焦点为F,抛物线C上横坐标为3的点M到焦点F的距离为4.
(1)求抛物线C的方程;
(2)过抛物线C的焦点F且斜率为1的直线l交抛物线C于A、B两点,求弦长|AB|.
(1)求抛物线C的方程;
(2)过抛物线C的焦点F且斜率为1的直线l交抛物线C于A、B两点,求弦长|AB|.