- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 利用焦半径公式解决直线与抛物线交点问题
- + 求直线与抛物线相交所得弦的弦长
- 抛物线中的三角形面积问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
,点
(1)求点
与抛物线
的焦点
的距离;
(2)设斜率为
的直线
与抛物线
交于
两点,若
的面积为
,求直线
的方程;
(3)是否存在定圆
,使得过曲线
上任意一点
作圆
的两条切线,与曲线
交于另外两点
时,总有直线
也与圆
相切?若存在,求出
的值,若不存在,请说明理由.


(1)求点



(2)设斜率为







(3)是否存在定圆









如图,已知直线
是抛物线
的准线.过焦点
的直线
交抛物线于
,
两点,过点
且与直线
垂直的直线交抛物线的准线于点
.

(1)求抛物线的标准方程;
(2)求
的最大值,并求出此时直线
的方程.










(1)求抛物线的标准方程;
(2)求


过抛物线y2=8x的焦点的直线l交抛物线于P(x1,y1),Q(x2,y2)两点,如果x1+x2=6,则|PQ|=( )
A.6 | B.8 | C.10 | D.12 |
已知抛物线
:
(
)的焦点为
,点
在抛物线
上,且
,直线
与抛物线
交于
,
两点,
为坐标原点.
(1)求抛物线
的方程;
(2)求
的面积.












(1)求抛物线

(2)求
