- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断直线与抛物线的位置关系
- 求直线与抛物线的交点坐标
- + 求抛物线的切线方程
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线方程为
,其焦点为
,点
为坐标原点,过焦点
作斜率为
的直线与抛物线交于
两点,过
两点分别作抛物线的两条切线,设两条切线交于点
.
(1)求
;
(2)设直线
与抛物线交于
两点,且四边形
的面积为
,求直线
的斜率
.








(1)求

(2)设直线






如图,已知过点D(0,-2)作抛物线C1:
=2py(p>0)的切线l,切点A在第二象限.
(Ⅰ)求点A的纵坐标;
(Ⅱ)若离心率为
的椭圆
(a>b>0)恰好经过点A,设直线l交椭圆的另一点为B,记直线l,OA,OB的斜率分别为k,k1,k2,若k1+2k2=4k,求椭圆方程.

(Ⅰ)求点A的纵坐标;
(Ⅱ)若离心率为



设抛物线C1:x 2=4 y的焦点为F,曲线C2与C1关于原点对称.
(Ⅰ) 求曲线C2的方程;
(Ⅱ) 曲线C2上是否存在一点P(异于原点),过点P作C1的两条切线PA,PB,切点A,B,满足|AB|是|FA|与|FB|的等差中项?若存在,求出点P的坐标;若不存在,请说明理由.
(Ⅰ) 求曲线C2的方程;
(Ⅱ) 曲线C2上是否存在一点P(异于原点),过点P作C1的两条切线PA,PB,切点A,B,满足|AB|是|FA|与|FB|的等差中项?若存在,求出点P的坐标;若不存在,请说明理由.

设抛物线
的方程为
,
为直线
上任意一点,过点
作抛物线
的两条切线
,切点分别为
,
.
(1)当
的坐标为
时,求过
三点的圆的方程,并判断直线
与此圆的位置关系;
(2)求证:直线
恒过定点
.









(1)当




(2)求证:直线


已知抛物线
:
(
)上一点
到焦点
的距离是点
到直线
的距离的3倍,过
且倾斜角我
的直线与抛物线
相交于
、
两点.
(Ⅰ)求
的值;
(Ⅱ)设
,直线
是抛物线
的切线,
为切点,且
,求
的面积.












(Ⅰ)求

(Ⅱ)设






已知直线
与抛物线
:
相交于
,
两点,
是线段
的中点,过
作
轴的垂线交
于点
.
(Ⅰ)证明:抛物线
在点
处的切线与
平行;
(Ⅱ)是否存在实数
使
?若存在,求
的值;若不存在,说明理由.











(Ⅰ)证明:抛物线



(Ⅱ)是否存在实数



已知点
,过点
且与
轴垂直的直线为
,
轴,交
于点
,直线
垂直平分
,交
于点
.
(1)求点
的轨迹方程;
(2)记点
的轨迹为曲线
,直线
与曲线
交于不同两点
,且
(
为常数),直线
与
平行,且与曲线
相切,切点为
,试问
的面积是否为定值.若为定值,求出
的面积;若不是定值,说明理由.











(1)求点

(2)记点












