- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断直线与抛物线的位置关系
- + 求直线与抛物线的交点坐标
- 求抛物线的切线方程
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
双曲线
的左、右焦点分别是
,抛物线
的焦点与点
重合,点
是抛物线与双曲线的一个交点,如图所示.

(1)求双曲线及抛物线的标准方程;
(2)设直线
与双曲线的过一、三象限的渐近线平行,且交抛物线于
两点,交双曲线于点
,若点
是线段
的中点,求直线
的方程.






(1)求双曲线及抛物线的标准方程;
(2)设直线






已知抛物线
,过定点
(
,且
)作直线
交抛物线于
两点,且直线
不垂直
轴,在
两点处分别作该抛物线的切线
,设
的交点为
,直线
的斜率为
,线段
的中点为
,则下列四个结论:①
;②当直线
绕着
点旋转时,点
的轨迹为抛物线;③当
时,直线
经过抛物线的焦点;④当
时,直线
垂直
轴.其中正确的个数有( )

























A.![]() | B.![]() | C.![]() | D.![]() |
设抛物线的顶点在坐标原点,焦点F在
轴正半轴上,过点F的直线交抛物线于A,B两点,线段AB的长是8,AB的中点到
轴的距离是
.
(1)求抛物线的标准方程;
(2)在抛物线上是否存在不与原点重合的点P,使得过点P的直线交抛物线于另一点Q,满足
,且直线PQ与抛物线在点P处的切线垂直?并请说明理由.



(1)求抛物线的标准方程;
(2)在抛物线上是否存在不与原点重合的点P,使得过点P的直线交抛物线于另一点Q,满足
