- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断直线与抛物线的位置关系
- + 求直线与抛物线的交点坐标
- 求抛物线的切线方程
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的左、右焦点为
,直线
过点
且垂直于椭圆的长轴,动直线
垂直
于点
,线段
的垂直平分线与
的交点的轨迹为曲线
,若
,且
是曲线
上不同的点,满足
,则
的取值范围为( )















A.![]() | B.![]() | C.![]() | D.![]() |
已知动圆过定点
,且在
轴上截得弦
的长为4.
(1)求动圆圆心的轨迹
的方程;
(2)设
,过点
斜率为
的直线
交轨迹
于
两点,
的延长线交轨迹
于
两点.记直线
的斜率为
,证明:
为定值,并求出这个定值.



(1)求动圆圆心的轨迹

(2)设












若直线x-y=2与抛物线y2=4x交于A,B两点,则线段AB的中点坐标是( )
A.(4,2) | B.(8,4) |
C.(2,1) | D.(2,4) |