- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断直线与抛物线的位置关系
- + 求直线与抛物线的交点坐标
- 求抛物线的切线方程
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设A、B为抛物线C:
上两点,A与B的中点的横坐标为2,直线AB的斜率为1.
(Ⅰ)求抛物线C的方程;
(Ⅱ)直线
交x轴于点M,交抛物线C:
于点P,M关于点P的对称点为N,连结ON并延长交C于点H.除H以外,直线MH与C是否有其他公共点?请说明理由.

(Ⅰ)求抛物线C的方程;
(Ⅱ)直线


在平面直角坐标系
中,点
,点
在
轴上,点
在
轴非负半轴上,点
满足:
(1)当点
在
轴上移动时,求动点
的轨迹C的方程;
(2)设
为曲线C上一点,直线
过点
且与曲线C在点
处的切线垂直,
与C的另一个交点为
,若以线段
为直径的圆经过原点,求直线
的方程.








(1)当点



(2)设








已知抛物线
:
,不过坐标原点
的直线
交于
,
两点.
(Ⅰ)若
,证明:直线
过定点;
(Ⅱ)设过
且与
相切的直线为
,过
且与
相切的直线为
.当
与
交于点
时,求
的方程.






(Ⅰ)若


(Ⅱ)设过










已知点
是椭圆
的右焦点,点
,
分别是
轴,
轴上的动点,且满足
.若点
满足
(
为坐标原点).
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)设过点
任作一直线与点
的轨迹交于
,
两点,直线
,
与直线
分别交于点
,
,试判断以线段
为直径的圆是否经过点
?请说明理由.










(Ⅰ)求点


(Ⅱ)设过点











已知抛物线
,
为其焦点,抛物线的准线交
轴于点T,直线l交抛物线于A,B两点。
(1)若O为坐标原点,直线l过抛物线焦点,且
,求△AOB的面积;
(2)当直线l与坐标轴不垂直时,若点B关于x轴的对称点在直线AT上,证明直线l过定点,并求出该定点的坐标。



(1)若O为坐标原点,直线l过抛物线焦点,且

(2)当直线l与坐标轴不垂直时,若点B关于x轴的对称点在直线AT上,证明直线l过定点,并求出该定点的坐标。
在平面直角坐标系
中,过
轴正方向上一点
任作一斜率为1的直线,与抛物线
相交于
两点,过线段
的中点
作一条垂直于
轴的直线,与直线
交于
,若三角形
的面积为
,则
的值为( )













A.![]() | B.![]() | C.![]() | D.![]() |