- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
是椭圆
上关于原点
对称的任意两点,且点
都不在
轴上.
(1)若
,求证: 直线
和
的斜率之积为定值;
(2)若椭圆长轴长为
,点
在椭圆
上,设
是椭圆上异于点
的任意两点,且
.问直线
是否过一个定点?若过定点,求出该定点坐标;若不过定点,请说明理由.





(1)若



(2)若椭圆长轴长为







已知椭圆
过点
,且离心率
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)过点
的直线
与椭圆
交于两点
,过
作
轴且与椭圆
交于另一点
,证明直线
过定点,并求出定点坐标。



(Ⅰ)求椭圆

(Ⅱ)过点









已知椭圆E的对称轴为坐标轴,焦点F1,F2在y轴,离心率为
.A是椭圆E与x轴负半轴的交点,且|AF1|+|AF2|=4.
(1)求曲线E的方程;
(2)过A作两条直线L1,L2,且L1,L2与曲线E的异于A的交点分别为B,C.设L1,L2的斜率分别是k1,k2,若k1k2=1,求证:由B、C确定的直线l经过定点.

(1)求曲线E的方程;
(2)过A作两条直线L1,L2,且L1,L2与曲线E的异于A的交点分别为B,C.设L1,L2的斜率分别是k1,k2,若k1k2=1,求证:由B、C确定的直线l经过定点.
中心在原点,焦点在x轴上的椭圆C的离心率为
,且经过点P
.
(1)求C的标准方程;
(2)直线
与C交于A、B两点,M为AB中点,且AB=2MP,请问直线
是否经过某个定点,如果经过定点,求出点的坐标;如果不过定点,请说明理由.


(1)求C的标准方程;
(2)直线


已知平面上的动点P(x,y)及两定点A(-2,0),B(2,0),直线PA,PB的斜率分别是k1,k2,且k1·k2=-
.
(1)求动点P的轨迹C的方程;
(2)已知直线l:y=kx+m与曲线C交于M,N两点,且直线BM、BN的斜率都存在,并满足kBM·kBN=-
,求证:直线l过原点.

(1)求动点P的轨迹C的方程;
(2)已知直线l:y=kx+m与曲线C交于M,N两点,且直线BM、BN的斜率都存在,并满足kBM·kBN=-

如图,椭圆C方程为
(
),点
为椭圆C的左、右顶点.

(1)若椭圆C上的点到焦点的距离的最大值为3,最小值为1,求椭圆的标准方程;
(2)若直线
与(1)中所述椭圆C相交于A、B两点(A、B不是左、右顶点),且满足
,求证:直线
过定点,并求出该点的坐标.




(1)若椭圆C上的点到焦点的距离的最大值为3,最小值为1,求椭圆的标准方程;
(2)若直线



已知椭圆的的右顶点为A,离心率
,过左焦点
作直线
与椭圆交于点P,Q,直线AP,AQ分别与直线
交于点
.
(Ⅰ)求椭圆的方程;
(Ⅱ)证明以线段
为直径的圆经过焦点
.





(Ⅰ)求椭圆的方程;
(Ⅱ)证明以线段


已知椭圆
的一个焦点与抛物线
的焦点
重合,且椭圆短轴的两个端点与
构成正三角形.
(1)求椭圆的方程;
(2)若过点
的直线
与椭圆交于不同两点
,试问在
轴上是否存在定点
,使
恒为定值? 若存在,求出
的坐标及定值;若不存在,请说明理由.




(1)求椭圆的方程;
(2)若过点







椭圆c:
(a>b>0)的离心率为
,过其右焦点F与长轴垂直的弦长为1,
(1)求椭圆C的方程;
(2)设椭圆C的左右顶点分别为A,B,点P是直线x=1上的动点,直线PA与椭圆的另一个交点为M,直线PB与椭圆的另一个交点为N,求证:直线MN经过一定点.


(1)求椭圆C的方程;
(2)设椭圆C的左右顶点分别为A,B,点P是直线x=1上的动点,直线PA与椭圆的另一个交点为M,直线PB与椭圆的另一个交点为N,求证:直线MN经过一定点.