刷题首页
题库
高中数学
题干
已知椭圆
E
的对称轴为坐标轴,焦点
F
1
,
F
2
在
y
轴,离心率为
.
A
是椭圆
E
与
x
轴负半轴的交点,且|
AF
1
|+|
AF
2
|=4.
(1)求曲线
E
的方程;
(2)过
A
作两条直线
L
1
,
L
2
,且
L
1
,
L
2
与曲线
E
的异于
A
的交点分别为
B
,
C
.设
L
1
,
L
2
的斜率分别是
k
1
,
k
2
,若
k
1
k
2
=1,求证:由
B
、
C
确定的直线
l
经过定点.
上一题
下一题
0.99难度 解答题 更新时间:2017-06-30 01:48:49
答案(点此获取答案解析)
同类题1
已知椭圆
(
)的上顶点为
,左焦点为
,离心率为
,直线
与圆
相切.
(1)求椭圆
的标准方程;
(2)设过点
且斜率存在的直线
与椭圆
相交于
两点,线段
的垂直平分线交
轴于点
,试判断
是否为定值?并说明理由.
同类题2
求下列各曲线的标准方程.
(1)长轴长为12,离心率为
,焦点在
x
轴上的椭圆;
(2)已知焦点在
x
轴上的双曲线的渐近线方程为
,焦距为10,求双曲线的标准方程.
同类题3
已知椭圆
:
的离心率为
,短轴长为2.
(1)求椭圆
的标准方程;
(2)若圆
:
的切线
与曲线
相交于
、
两点,线段
的中点为
,求
的最大值.
同类题4
已知椭圆
的一个顶点为
,离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设过椭圆右焦点的直线
交椭圆于
两点,过原点的直线
交椭圆于
两点.若
,求证:
为定值.
同类题5
已知椭圆
的右焦点
,点
在椭圆上.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若点
在圆
上,且
在第一象限,过点
作圆
的切线交椭圆于
两点,问
是否为定值?如果是,求出该定值;如果不是,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的直线过定点问题