- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
经过点
,离心率
,其中
分别表示标准正态分布的期望值与标准差.

(1)求椭圆C的方程;
(2)设直线
与椭圆C交于A,B两点,点A关于x轴的对称点为
.
①试建立
的面积关于m的函数关系;②莆田十中高三(1)班数学兴趣小组通过试验操作初步推断:“当m变化时,直线
与x轴交于一个定点”.你认为此推断是否正确?若正确,请写出定点坐标,并证明你的结论;若不正确,请说明理由.





(1)求椭圆C的方程;
(2)设直线



①试建立


已知椭圆
的左、右焦点分别为F1、F2,短轴端点分别为A、B,且四边形F1AF2B是边长为2的正方形
(I)求椭圆的方程;
(II)若C、D分别是椭圆长轴的左、右端点,动点M满足
,连结CM交椭圆于P,证明
为定值(O为坐标原点);K^S*5U.C#O%
(III)在(II)的条件下,试问在x轴上是否存在异于点C的定点Q,使以线段MP为直径的圆恒过直线DP、MQ的交点,若存在,求出Q的坐标,若不存在,说明理由



(I)求椭圆的方程;
(II)若C、D分别是椭圆长轴的左、右端点,动点M满足


(III)在(II)的条件下,试问在x轴上是否存在异于点C的定点Q,使以线段MP为直径的圆恒过直线DP、MQ的交点,若存在,求出Q的坐标,若不存在,说明理由


已知
、
分别为椭圆
:
的上、下焦点,其中
也是抛物线
:
的焦点,点
是
与
在第二象限的交点,且
.

(Ⅰ)求椭圆的方程;
(Ⅱ)已知点
(1,3)和圆
:
,过点
的动直线
与圆
相交于不同的两点
,在线段
取一点
,满足:
,
(
且
).
求证:点
总在某定直线上.












(Ⅰ)求椭圆的方程;
(Ⅱ)已知点













求证:点

直线
与椭圆
相交于
,
两点,
为坐标原点.
(Ⅰ)当点
的坐标为
,且四边形
为菱形时,求
的长;
(Ⅱ)当点
在
上且不是
的顶点时,证明:四边形
不可能为菱形.





(Ⅰ)当点




(Ⅱ)当点




如图所示,椭圆M:
+
=1(a>b>0)的离心率为
,右准线方程为x=4,过点P(0,4)作关于y轴对称的两条直线l1,l2,且l1与椭圆交于不同两点A,B,l2与椭圆交于不同两点D,C.

(1) 求椭圆M的方程;
(2) 证明:直线AC与直线BD交于点Q(0,1);
(3) 求线段AC长的取值范围.




(1) 求椭圆M的方程;
(2) 证明:直线AC与直线BD交于点Q(0,1);
(3) 求线段AC长的取值范围.
如图,在平面直角坐标系xOy中,已知圆O:x2+y2=4,椭圆C:
+y2=1,A为椭圆右顶点.过原点O且异于坐标轴的直线与椭圆C交于B,C两点,直线AB与圆O的另一交点为P,直线PD与圆O的另一交点为Q,其中D(-
,0).设直线AB,AC的斜率分别为k1,k2.

(1) 求k1k2的值;
(2) 记直线PQ,BC的斜率分别为kPQ,kBC,是否存在常数λ,使得kPQ=λkBC?若存在,求λ的值;若不存在,说明理由;
(3) 求证:直线AC必过点Q.



(1) 求k1k2的值;
(2) 记直线PQ,BC的斜率分别为kPQ,kBC,是否存在常数λ,使得kPQ=λkBC?若存在,求λ的值;若不存在,说明理由;
(3) 求证:直线AC必过点Q.
已知抛物线C:x2=2py(p>0)的焦点为F,直线2x-y+2=0交抛物线C于A,B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q.
(I)D是抛物线C上的动点,点E(-1,3),若直线AB过焦点F,求|DF|+|DE|的最小值;
(II)是否存在实数p,使
?若存在,求出p的值;若不存在,说明理由.
(I)D是抛物线C上的动点,点E(-1,3),若直线AB过焦点F,求|DF|+|DE|的最小值;
(II)是否存在实数p,使

已知椭圆C:
(a>b>0),四点P1(1,1),P2(0,1),P3
,P4
中恰有三点在椭圆C上.
(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l过定点.



(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l过定点.