刷题首页
题库
高中数学
题干
已知椭圆
的一个焦点与抛物线
的焦点
重合,且椭圆短轴的两个端点与
构成正三角形.
(1)求椭圆的方程;
(2)若过点
的直线
与椭圆交于不同两点
,试问在
轴上是否存在定点
,使
恒为定值? 若存在,求出
的坐标及定值;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2010-04-02 11:06:26
答案(点此获取答案解析)
同类题1
如图,已知椭圆
E
的右焦点为
,
P
.
Q
为椭圆上的两个动点,
周长的最大值为8.
(1)求椭圆
E
的标准方程;
(2)记椭圆
E
的左焦点为
,过
作直线
l
与椭圆交于不同两点
M
.
N
,
求
面积取最大值时的直线
l
方程.
同类题2
已知椭圆
经过点
,其左焦点为
.过
点的直线
交椭圆于
、
两点,交
轴的正半轴于点
.
(1)求椭圆
的方程;
(2)过点
且与
垂直的直线交椭圆于
、
两点,若四边形
的面积为
,求直线
的方程;
(3)设
,
,求证:
为定值.
同类题3
已知
,椭圆
:
(
)的离心率为
,
是椭圆
的右焦点,直线
的斜率为
,
为原点.
(I)求椭圆
的方程;
(Ⅱ)直线
经过点
,与椭圆交于
两点,若以
为直径的圆经过坐标原点
,求
.
同类题4
已知椭圆
:
,若
,离心率为
.
(1)求
的方程;
(2)斜率为
的直线
与椭圆交于
,
两点,以线段
为直径的圆过点
,求直线
的方程.
同类题5
给定椭圆
>
>0
,称圆心在原点
,半径为
的圆是椭圆
的“准圆”.若椭圆
的一个焦点为
,其短轴上的一个端点到
的距离为
.
(1)求椭圆
的方程和其“准圆”方程;
(2)点
是椭圆
的“准圆”上的一个动点,过点
作直线
,使得
与椭圆
都只有一个交点.求证:
⊥
.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的直线过定点问题