- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设
是圆
上的一动点,点
在直线
上线段
的垂直平分线交直线
于点
.
(1)若点
的轨迹为椭圆,则求
的取值范围;
(2)设
时对应的椭圆为
,
为椭圆的右顶点,直线
与
交于
、
两点,若
,求
面积的最大值.







(1)若点


(2)设









已知椭圆
:
的两焦点与短轴一端点组成一个正三角形的三个顶点,且焦点到椭圆上的点的最短距离为1.
(1)求椭圆
的方程;
(2)过点
的直线
与椭圆交于
,
两点,点
关于
轴的对称点为
,求证:直线
过定点,并求出该定点的坐标.


(1)求椭圆

(2)过点








设点
,
的坐标分别为
,
,直线
,
相交于点
,且它们的斜率之积为-2,设点
的轨迹是曲线
.
(1)求曲线
的方程;
(2)已知直线
与曲线
相交于不同两点
、
(均不在坐标轴上的点),设曲线
与
轴的正半轴交于点
,若
,垂足为
且
,求证:直线
恒过定点.









(1)求曲线

(2)已知直线











已知椭圆C:
.
(1)求椭圆C的离心率;
(2)设
分别为椭圆C的左右顶点,点P在椭圆C上,直线AP,BP分别与直线
相交于点M,N.当点P运动时,以M,N为直径的圆是否经过
轴上的定点?试证明你的结论.

(1)求椭圆C的离心率;
(2)设



已知圆M:x2+(y﹣1)2=1,圆N:x2+(y+1)2=1,直线l1、l2分别过圆心M、N,且l1与圆M相交于A、B,l2与圆N相交于C、D,P是椭圆
上的任意一动点,则
的最小值为( )


A.![]() | B.![]() | C.3 | D.6 |
已知离心率为
的椭圆
的左顶点为A,且椭圆E经过
与坐标轴不垂直的直线l与椭圆E交于C,D两点,且直线AC和直线AD的斜率之积为
.
(I)求椭圆E的标准方程;
(Ⅱ)求证:直线l过定点.





(I)求椭圆E的标准方程;
(Ⅱ)求证:直线l过定点.
已知圆
,圆
,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.
(1)求曲线C的方程;
(2)设不经过点
的直线l与曲线C相交于A,B两点,直线QA与直线QB的斜率均存在且斜率之和为-2,证明:直线l过定点.


(1)求曲线C的方程;
(2)设不经过点

已知椭圆
过点
,其离心率
.
(1)求椭圆
的方程;
(2)若直线
不经过点
,且与椭圆
相交于
两点(
、
不重合),若直线
与直线
的斜率之积为
.
(ⅰ)证明:
过定点,并求出定点坐标;
(ⅱ)求
的面积的最大值.



(1)求椭圆

(2)若直线









(ⅰ)证明:

(ⅱ)求

设椭圆
:
的左右焦点分别为
,
,离心率
,过
且垂直于
轴的直线被椭圆
截得的长为
.
(1)求椭圆
的方程;
(2)已知点
的坐标为
,直线
:
不过点
且与椭圆
交于
、
两点,设
为坐标原点,
,求证:直线
过定点.









(1)求椭圆

(2)已知点










