已知椭圆的焦距为2,过点.
(1)求椭圆的标准方程;
(2)设椭圆的右焦点为F,定点,过点F且斜率不为零的直线l与椭圆交于AB两点,以线段AP为直径的圆与直线的另一个交点为Q,证明:直线BQ恒过一定点,并求出该定点的坐标.
当前题号:1 | 题型:解答题 | 难度:0.99
在平面直角坐标系中,已知椭圆,如图所示,斜率为且不过原点的直线交椭圆于两点,线段的中点为,射线交椭圆于点,交直线于点.
(1)求的最小值;
(2)若,求证:直线过定点.
当前题号:2 | 题型:解答题 | 难度:0.99
已知椭圆的两个焦点与短轴的一个端点构成一个等边三角形,且直线与圆相切.
(1)求椭圆的方程;
(2)已知过椭圆的左顶点的两条直线分别交椭圆两点,且,求证:直线过定点,并求出定点坐标;
(3)在(2)的条件下求面积的最大值.
当前题号:3 | 题型:解答题 | 难度:0.99
已知是椭圆与圆的一个交点,且圆心是椭圆的一个焦点,
(1)求椭圆的方程;
(2)过的直线交圆与两点,连接分别交椭圆与点,试问直线是否过定点?若过定点,则求出定点坐标;若不过定点,请说明理由.
当前题号:4 | 题型:解答题 | 难度:0.99
设曲线是焦点在轴上的椭圆,两个焦点分别是是,且是曲线上的任意一点,且点到两个焦点距离之和为4.
(1)求的标准方程;
(2)设的左顶点为,若直线与曲线交于两点不是左右顶点),且满足,求证:直线恒过定点,并求出该定点的坐标.
当前题号:5 | 题型:解答题 | 难度:0.99
已知椭圆C:的左焦点为,已知,过作斜率不为的直线,与椭圆C交于两点 ,点关于轴的对称点为.
(Ⅰ)求证:动直线恒过定点(椭圆的左焦点);
(Ⅱ)的面积记为,求的取值范围.
当前题号:6 | 题型:解答题 | 难度:0.99