- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的焦距为2,过点
.
(1)求椭圆
的标准方程;
(2)设椭圆的右焦点为F,定点
,过点F且斜率不为零的直线l与椭圆交于A,B两点,以线段AP为直径的圆与直线
的另一个交点为Q,证明:直线BQ恒过一定点,并求出该定点的坐标.


(1)求椭圆

(2)设椭圆的右焦点为F,定点


在平面直角坐标系
中,已知椭圆
,如图所示,斜率为
且不过原点的直线
交椭圆
于两点
,线段
的中点为
,射线
交椭圆
于点
,交直线
于点
.
(1)求
的最小值;
(2)若
,求证:直线
过定点.













(1)求

(2)若



已知椭圆
的两个焦点
,
与短轴的一个端点构成一个等边三角形,且直线
与圆
相切.
(1)求椭圆
的方程;
(2)已知过椭圆
的左顶点
的两条直线
,
分别交椭圆
于
,
两点,且
,求证:直线
过定点,并求出定点坐标;
(3)在(2)的条件下求
面积的最大值.





(1)求椭圆

(2)已知过椭圆









(3)在(2)的条件下求

已知
是椭圆
与圆
的一个交点,且圆心
是椭圆的一个焦点,
(1)求椭圆
的方程;
(2)过
的直线交圆与
、
两点,连接
、
分别交椭圆与
、
点,试问直线
是否过定点?若过定点,则求出定点坐标;若不过定点,请说明理由.




(1)求椭圆

(2)过









设曲线
是焦点在
轴上的椭圆,两个焦点分别是是
,
,且
,
是曲线上的任意一点,且点
到两个焦点距离之和为4.
(1)求
的标准方程;
(2)设
的左顶点为
,若直线
:
与曲线
交于两点
,
(
,
不是左右顶点),且满足
,求证:直线
恒过定点,并求出该定点的坐标.







(1)求

(2)设











已知椭圆C:
的左焦点为
,已知
,过
作斜率不为
的直线
,与椭圆C交于
两点 ,点
关于
轴的对称点为
.
(Ⅰ)求证:动直线
恒过定点
(椭圆的左焦点);
(Ⅱ)
的面积记为
,求
的取值范围.










(Ⅰ)求证:动直线


(Ⅱ)


