- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
:
的左焦点为
,且过点
.

(1)求椭圆
的标准方程;
(2)已知
,
分别为椭圆
的左、右顶点,
为直线
上任意一点,直线
,
分别交椭圆
于不同的两点
,
.求证:直线
恒过定点,并求出定点坐标.





(1)求椭圆

(2)已知











在平面直角坐标系中,已知点A(-
,0),B(
,0),直线MA,MB交于点M,它们的斜率之积为常数m(m≠0),且△MAB的面积最大值为
,设动点M的轨迹为曲线E.
(1)求曲线E的方程;
(2)过曲线E外一点Q作E的两条切线l1,l2,若它们的斜率之积为-1,那么
·
是否为定值?若是,请求出该值;若不是,请说明理由.



(1)求曲线E的方程;
(2)过曲线E外一点Q作E的两条切线l1,l2,若它们的斜率之积为-1,那么


在平面直角坐标平面中,
的两个顶点为
,平面内两点
、
同时满足:①
;②
;③
.
(1)求顶点
的轨迹
的方程;
(2)过点
作两条互相垂直的直线
,直线
与点
的轨迹
相交弦分别为
,设弦
的中点分别为
.
①求四边形
的面积
的最小值;
②试问:直线
是否恒过一个定点?若过定点,请求出该定点,若不过定点,请说明理由.







(1)求顶点


(2)过点








①求四边形


②试问:直线

已知点,点
为平面上动点,过点
作直线
的垂线,垂足为
,且
.

(2)过点










如图,已知抛物线
,其焦点到准线的距离为2,圆
,直线
与圆和抛物线自左至右顺次交于四点
、
、
、
,
(1)若线段
、
、
的长按此顺序构成一个等差数列,求正数
的值;
(2)若直线
过抛物线焦点且垂直于直线
,直线
与抛物线交于点
、
,设
、
的中点分别为
、
,求证:直线
过定点.







(1)若线段




(2)若直线











在平面直角坐标系
中,已知点
,
,动点
不在
轴上,直线
、
的斜率之积
.
(Ⅰ)求动点
的轨迹方程;
(Ⅱ)经过点
的两直线与动点
的轨迹分别相交于
、
两点。是否存在常数
,使得任意满足
的直线
恒过线段
的中点?请说明理由.








(Ⅰ)求动点

(Ⅱ)经过点








已知椭圆
的离心率为
,
,
为椭圆
的左、右焦点,
为椭圆
上的任意一点,
的面积的最大值为1,
、
为椭圆
上任意两个关于
轴对称的点,直线
与
轴的交点为
,直线
交椭圆
于另一点
.
(1)求椭圆
的标准方程;
(2)求证:直线
过定点.


















(1)求椭圆

(2)求证:直线

已知椭圆
的右焦点为
,原点为
,椭圆
的动弦
过焦点
且不垂直于坐标轴,弦
的中点为
,过
且垂直于线段
的直线交射线
于点
.
(1)证明:点
在定直线上;
(2)当
最大时,求
的面积.












(1)证明:点

(2)当



已知点在椭圆
:
上,
是椭圆的一个焦点.

(Ⅱ)椭圆C上不与









