刷题首页
题库
高中数学
题干
已知点
在椭圆
:
上,
是椭圆的一个焦点.
(Ⅰ)求椭圆
的方程;
(Ⅱ)椭圆
C
上不与
点重合的两点
,
关于原点
O
对称,直线
,
分别交
轴于
,
两点.求证:以
为直径的圆被直线
截得的弦长是定值.
上一题
下一题
0.99难度 解答题 更新时间:2018-04-16 11:33:01
答案(点此获取答案解析)
同类题1
椭圆的焦距为8,且椭圆上的点到两个焦点的距离之和为10,则该椭圆的标准方程是 ( )
A.
B.
或
C.
D.
或
同类题2
已知椭圆
的离心率为
,长轴长为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若直线
与椭圆
交于
,
两点,坐标原点
在以
为直径的圆上,
于
点.试求点
的轨迹方程.
同类题3
设椭圆
的一个顶点与抛物线
的焦点重合,
、
分别是椭圆
的左、右焦点,其离心率
椭圆
右焦点
的直线
与椭圆
交于
、
两点.
(1)求椭圆
的方程;
(2)是否存在直线
,使得
?若存在,求出直线
的方程;若不存在,说明理由.
同类题4
已知椭圆
的两个焦点分别为
、
,短轴的两个端点分别为
、
,且
为等边三角形.
(1)若椭圆长轴的长为4,求椭圆
的方程;
(2)如果在椭圆
上存在不同的两点
、
关于直线
对称,求实数
的取值范围;
(3)已知点
,椭圆
上两点
、
满足
,求点
横坐标的取值范围.
同类题5
已知椭圆
,
为椭圆的左右焦点,过右焦点垂直于
轴的直线交椭圆于
两点,若
,且椭圆离心率
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知
为椭圆上两个不同点,
为
中点,
关于原点和
轴的对称点分别是
,直线
在
轴的截距为
,直线
在
轴的截距为
,试证明:
为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的直线过定点问题