刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,
,
为椭圆
的左、右焦点,
为椭圆
上的任意一点,
的面积的最大值为1,
、
为椭圆
上任意两个关于
轴对称的点,直线
与
轴的交点为
,直线
交椭圆
于另一点
.
(1)求椭圆
的标准方程;
(2)求证:直线
过定点.
上一题
下一题
0.99难度 解答题 更新时间:2018-03-24 01:31:24
答案(点此获取答案解析)
同类题1
已知椭圆
过点
,离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若
,
分别是椭圆
与
轴的两个交点,过点
且斜率不为
的直线
与椭圆
交于
,
两点,直线
过点
,求证:直线
过点
.
同类题2
已知椭圆
的离心率为
,抛物线
的焦点是
,
是抛物线上的点,
H
为直线
上任一点,
A
,
B
分别为椭圆
C
的上、下顶点,且
A
,
B
,
H
三点的连线可以构成三角形.
(Ⅰ)求椭圆
C
的方程;
(Ⅱ)直线
HA
,
HB
与椭圆
C
的另一交点分别为点
D
,
E
,求证:直线
DE
过定点.
同类题3
已知椭圆中心在原点,焦点在
轴上,离心率
,过椭圆的右焦点且垂直于长轴的弦长为
(1)求椭圆的标准方程;
(2)
为椭圆左顶点,
为椭圆上异于
的任意两点,若
,求证:直线
过定点并求出定点坐标.
同类题4
已知点
是椭圆
上任一点,点
到直线
的距离为
,到点
的距离为
,且
.直线
与椭圆
交于不同两点
(
都在
轴上方),且
.
(1)求椭圆
的方程;
(2)当
为椭圆与
轴正半轴的交点时,求直线
方程;
(3)对于动直线
,是否存在一个定点,无论
如何变化,直线
总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.
同类题5
设圆
(圆心为
):
,圆
圆心为
:
,定点
,
为直线
上异于
的一点,
和
分别为圆
、圆
上异于
的点,满足
,
,直线
和
交于点
,记
的轨迹为曲线
.
(1) 求证: 曲线
为椭圆(或椭圆的一部分),并写出
的方程;
(2) 设
的上顶点为
,过点
的直线与椭圆交于
两点(异于
),求证: 直线
和
的斜率之和为定值,并求出这个定值.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的直线过定点问题