- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与椭圆的位置关系
- + 椭圆的弦长、焦点弦
- 求椭圆中的弦长
- 椭圆中三角形(四边形)的面积
- 椭圆中的通径问题
- 椭圆的焦半径与焦点弦问题
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
:
的右焦点为
,过点
的两条互相垂直的直线
,
,
与椭圆
相交于点
,
,
与椭圆
相交于点
,
,则下列叙述正确的是___________
存在直线
,
使得
值为7 存在直线
.
使得
为
弦长
存在最大值,且最大值为4 ④弦长
不存在最小值














存在直线







弦长


已知椭圆
:
的离心率与双曲线
的离心率互为倒数,且过点
.
(1)求椭圆
的方程;
(2)过
作两条直线
与圆
相切且分别交椭圆于
两点.
①求证:直线
的斜率为定值;
②求
面积的最大值(其中
为坐标原点).




(1)求椭圆

(2)过





①求证:直线

②求


把半椭圆
(x≥0)与圆弧(x﹣c)2+y2=a2(x<0)合成的曲线称作“曲圆”,其中F(c,0)为半椭圆的右焦点.如图,A1,A2,B1,B2分别是“曲圆”与x轴、y轴的交点,已知∠B1FB2=
,扇形FB1A1B2的面积为
.
(1)求a,c的值;
(2)过点F且倾斜角为θ的直线交“曲圆”于P,Q两点,试将△A1PQ的周长L表示为θ的函数;
(3)在(2)的条件下,当△A1PQ的周长L取得最大值时,试探究△A1PQ的面积是否为定值?若是,请求出该定值;若不是,请求出面积的取值范围.
-



(1)求a,c的值;
(2)过点F且倾斜角为θ的直线交“曲圆”于P,Q两点,试将△A1PQ的周长L表示为θ的函数;
(3)在(2)的条件下,当△A1PQ的周长L取得最大值时,试探究△A1PQ的面积是否为定值?若是,请求出该定值;若不是,请求出面积的取值范围.
-

已知椭圆
:
的左右焦点分别为
、
,左右顶点分别是
、
,长轴长为
,
是以原点为圆心,
为半径的圆的任一条直径,四边形
的面积最大值为
.
(1)求椭圆
的方程;
(2)不经过原点的直线
:
与椭圆交于
、
两点,
①若直线
与
的斜率分别为
,
,且
,求证:直线
过定点,并求出该定点的坐标;
②若直线
的斜率是直线
、
斜率的等比中项,求
面积的取值范围.











(1)求椭圆

(2)不经过原点的直线




①若直线






②若直线




已知椭圆
的左、右焦点分别为,点
是椭圆
上的一个动点,
的周长为6,且存在点
使得,
为正三角形.
(1)求椭圆
的方程;
(2)若
是椭圆
上不重合的四个点,
与
相交于点
,且
.若
的斜率为
,求四边形
的面积.






(1)求椭圆

(2)若









过椭圆
的左焦点
作斜率为
的直线交椭圆于
,
两点,
为弦
的中点,直线
交椭圆于
,
两点.
(1)设直线
的斜率为
,求
的值;
(2)若
,
分别在直线
的两侧,
,求
的面积.










(1)设直线



(2)若





