- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 根据焦点或准线写出抛物线的标准方程
- 根据定义求抛物线的标准方程
- 根据抛物线上的点求标准方程
- + 求抛物线的轨迹方程
- 求实际问题中的抛物线方程
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知动圆过定点
,且在
轴上截得的弦长为4,记动圆圆心的轨迹为曲线C.
(Ⅰ)求直线
与曲线C围成的区域面积;
(Ⅱ)点
在直线
上,点
,过点
作曲线C的切线
、
,切点分别为
、
,证明:存在常数
,使得
,并求
的值.


(Ⅰ)求直线

(Ⅱ)点











已知点
是椭圆
的右焦点,点
,
分别是
轴,
轴上的动点,且满足
.若点
满足
(
为坐标原点).
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)设过点
任作一直线与点
的轨迹交于
,
两点,直线
,
与直线
分别交于点
,
,试判断以线段
为直径的圆是否经过点
?请说明理由.










(Ⅰ)求点


(Ⅱ)设过点











在直角坐标系
中,曲线
上的点均在曲线
外,且对
上任意一点
,
到直线
的距离等于该点与曲线
上点的距离的最小值.
(1)求动点
的轨迹
的方程;
(2)若点
是曲线
的焦点,过
的两条直线
关于
轴对称,且分别交曲线
于
,若四边形
的面积等于
,求直线
的方程.








(1)求动点


(2)若点










已知抛物线
:
的焦点为
,抛物线
与直线
交于两点
(
为坐标原点),且
.
(1)求抛物线
的方程.
(2)不过原点的直线
与
垂直,且与抛物线交于不同的两点
、
,若坐标原点
在以线段
为直径的圆上,求
的面积.








(1)求抛物线

(2)不过原点的直线







在平面直角坐标系
中,点
,动点
在
轴上投影为点
,且
.
(1)求动点
的轨迹方程;
(2)过点
的直线与点
的轨迹相交于
两点,若
,求直线的方程(结果用斜截式表示).






(1)求动点

(2)过点




在平面直角坐标系
中,已知抛物线
:
,过抛物线焦点
且与
轴垂直的直线与抛物线相交于
、
两点,且
的周长为
.
(1)求抛物线
的方程;
(2)若过焦点
且斜率为1的直线
与抛物线
相交于
、
两点,过点
、
分别作抛物线
的切线
、
,切线
与
相交于点
,求:
的值.









(1)求抛物线

(2)若过焦点














已知抛物线
的焦点为
,点
是直线
与
轴的交点,若直线
与抛物线
在第四象限的交点为
,与抛物线
的准线交于点
,若
,则点
的坐标为__________ .












已知抛物线
,直线
经过抛物线
的焦点,且垂直于抛物线的对称轴,
与抛物线两交点间的距离为4.
(1)求抛物线
的方程;
(2)已知
,过
的直线
与抛物线
相交于
两点,设直线
与
的斜率分别为
和
,求证:
为定值,并求出定值.




(1)求抛物线

(2)已知










已知点
为直线
上的动点,
,过
作直线
的垂线
,
交
的中垂线于点
,记点
的轨迹为
.
(Ⅰ)求曲线
的方程;
(Ⅱ)若直线
与圆
相切于点
,与曲线
交于
,
两点,且
为线段
的中点,求直线
的方程.











(Ⅰ)求曲线

(Ⅱ)若直线









在直角坐标系
中,已知一动圆经过点
且在
轴上截得的弦长为4,设动圆圆心的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
作互相垂直的两条直线
,
,
与曲线
交于
,
两点,
与曲线
交于
,
两点,线段
,
的中点分别为
,
,求证:直线
过定点
,并求出定点
的坐标.




(1)求曲线

(2)过点

















