- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 根据焦点或准线写出抛物线的标准方程
- 根据定义求抛物线的标准方程
- 根据抛物线上的点求标准方程
- + 求抛物线的轨迹方程
- 求实际问题中的抛物线方程
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在平面直角坐标系xOy中,O为坐标原点,已知点
,P是动点,且三角形POQ的三边所在直线的斜率满足
.
(1)求点P的轨迹C的方程;
(2)过F作倾斜角为60°的直线L,交曲线C于A,B两点,求△AOB的面积;
(3)过点
任作两条互相垂直的直线
,分别交轨迹C 于点A,B和M,N,设线段AB,MN的中点分别为E,
,求证:直线EF恒过一定点.


(1)求点P的轨迹C的方程;
(2)过F作倾斜角为60°的直线L,交曲线C于A,B两点,求△AOB的面积;
(3)过点


A. |
设抛物线C:
的焦点为F,经过点F的直线与抛物线交于A、B两点.
(1)若
,求线段
中点M的轨迹方程;
(2)若直线AB的方向向量为
,当焦点为
时,求
的面积;
(3)若M是抛物线C准线上的点,求证:直线
的斜率成等差数列.

(1)若


(2)若直线AB的方向向量为



(3)若M是抛物线C准线上的点,求证:直线

已知点
,直线l:
,P为平面上的动点,过P作直线l的垂线,垂足为Q,且满足
.
(1)求点P的轨迹C的方程;
(2)对于(1)中轨迹C,
为C上的一点,动点M、N都在C上,且直线AM与AN的斜率互为相反数,求证:直线MN的斜率是定值.(求出该定值)



(1)求点P的轨迹C的方程;
(2)对于(1)中轨迹C,

在平面直角坐标系
中,已知点
,直线
:
,点
在直线
上移动,
是线段
与
轴的交点,动点
满足:
,
.
(1)求动点
的轨迹方程
;
(2)若直线
与曲线
交于
,
两点,过点
作直线
的垂线与曲线
相交于
,
两点,求
的最大值.












(1)求动点


(2)若直线










已知圆
,动圆
与圆
外切,且与直线
相切,该动圆圆心
的轨迹为曲线
.
(1)求曲线
的方程
(2)过点
的直线与抛物线相交于
两点,抛物线在点A的切线与
交于点N,求
面积的最小值.






(1)求曲线

(2)过点




在平面直角坐标系中,已知
,若线段FP的中垂线l与抛物线C:
总是相切.
(1)求抛物线C的方程;
(2)若过点Q(2,1)的直线l′交抛物线C于M,N两点,过M,N分别作抛物线的切线
相交于点A.
分别与y轴交于点B,C.
(i)证明:当
变化时,
的外接圆过定点,并求出定点的坐标;
(ii)求
的外接圆面积的最小值.


(1)求抛物线C的方程;
(2)若过点Q(2,1)的直线l′交抛物线C于M,N两点,过M,N分别作抛物线的切线


(i)证明:当


(ii)求

已知动圆
与定圆
:
外切,且与
轴相切.

(1)求动圆圆心
的轨迹
的方程;
(2)过
作直线
与
在
轴右侧的部分相交于
,
两点,点
关于
轴的对称点为
.
(ⅰ)求直线
与
轴的交点
的坐标;
(ⅱ)若
,求
的内切圆方程.





(1)求动圆圆心


(2)过









(ⅰ)求直线



(ⅱ)若


设抛物线
的方程为
,其中常数
,
是抛物线
的焦点.
(1)若直线
被抛物线
所截得的弦长为6,求
的值;
(2)设
是点
关于顶点
的对称点,
是抛物线
上的动点,求
的最大值;
(3)设
,
、
是两条互相垂直,且均经过点
的直线,
与抛物线
交于点
、
,
与抛物线
交于点
、
,若点
满足
,求点
的轨迹方程.





(1)若直线



(2)设






(3)设















在直角坐标系
中,动圆
与圆
外切,且圆
与直线
相切,记动圆圆心
的轨迹为曲线
.
(1)求曲线
的轨迹方程;
(2)直线
与抛物线交于两个不同的点
,若
,求实数
的值.







(1)求曲线

(2)直线



