- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 根据焦点或准线写出抛物线的标准方程
- 根据定义求抛物线的标准方程
- 根据抛物线上的点求标准方程
- + 求抛物线的轨迹方程
- 求实际问题中的抛物线方程
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知平面上两定点M(0,﹣2)、N(0,2),P为一动点,满足
•
|
|•|
|
(I)求动点P的轨迹C的方程;
(II)若A、B是轨迹C上的两不同动点,且
λ
.分别以A、B为切点作轨迹C的切线,设其交点Q,证明
为定值.




(I)求动点P的轨迹C的方程;
(II)若A、B是轨迹C上的两不同动点,且



已知圆C:x2+y2+2x﹣2y+1=0和抛物线E:y2=2px(p>0),圆C与抛物线E的准线交于M、N两点,△MNF的面积为p,其中F是E的焦点.
(1)求抛物线E的方程;
(2)不过原点O的动直线l交该抛物线于A,B两点,且满足OA⊥OB,设点Q为圆C上任意一动点,求当动点Q到直线l的距离最大时直线l的方程.
(1)求抛物线E的方程;
(2)不过原点O的动直线l交该抛物线于A,B两点,且满足OA⊥OB,设点Q为圆C上任意一动点,求当动点Q到直线l的距离最大时直线l的方程.
已知动圆C过定点F(2,0),且与直线x=-2相切,圆心C的轨迹为E,
(1)求圆心C的轨迹E的方程;
(2)若直线l交E与P,Q两点,且线段PQ的中心点坐标(1,1),求|PQ|.
(1)求圆心C的轨迹E的方程;
(2)若直线l交E与P,Q两点,且线段PQ的中心点坐标(1,1),求|PQ|.
在平面直角坐标系xOy中,动点E到定点
和定直线
的距离相等.
(1)求动点E的轨迹C的方程;
(2)设动直线
与曲线C有唯一的公共点P,与直线
相交于点Q,若
,求证:点M的轨迹恒过定点
.


(1)求动点E的轨迹C的方程;
(2)设动直线





已知动圆过定点
,且在x轴上截得的弦长为4.
(1)求动圆圆心M的轨迹方程C;
(2)设不与x轴垂直的直线l与轨迹C交手不同两点
,
.若
,求证:直线l过定点.

(1)求动圆圆心M的轨迹方程C;
(2)设不与x轴垂直的直线l与轨迹C交手不同两点



已知圆
,一动圆
与直线
相切且与圆
外切.
(1)求动圆圆心
的轨迹
的方程;
(2)过
作直线
,交(1)中轨迹
于
两点,若
中点的纵坐标为
,求直线
的方程.




(1)求动圆圆心


(2)过







已知点
,点P为平面上的动点,过点P作直线l:
的垂线,垂足为Q,且
.
Ⅰ
求动点P的轨迹C的方程;
Ⅱ
设点P的轨迹C与x轴交于点M,点A,B是轨迹C上异于点M的不同的两点,且满足
,求
的取值范围.









在直角坐标系
中,点
,
是曲线
上的任意一点,动点
满足
(1)求点
的轨迹方程;
(2)经过点
的动直线
与点
的轨迹方程交于
两点,在
轴上是否存在定点
(异于点
),使得
?若存在,求出
的坐标;若不存在,请说明理由.






(1)求点

(2)经过点









在平面直角坐标系xOy中,点
满足方程
.
(1)求点M的轨迹C的方程;
(2)作曲线C关于
轴对称的曲线,记为
,在曲线C上任取一点
,过点P作曲线C的切线l,若切线l与曲线
交于A,B两点,过点A,B分别作曲线
的切线
,
,且
,
的交点为Q,试问以Q为直角的
是否存在,若存在,求出点P的坐标;若不存在,请说明理由.


(1)求点M的轨迹C的方程;
(2)作曲线C关于









