- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 根据焦点或准线写出抛物线的标准方程
- 根据定义求抛物线的标准方程
- 根据抛物线上的点求标准方程
- + 求抛物线的轨迹方程
- 求实际问题中的抛物线方程
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知点
,过点
作与
轴平行的直线
,点
为动点
在直线
上的投影,且满足
.
(1)求动点
的轨迹
的方程;
(2)已知点
为曲线
上的一点,且曲线
在点
处的切线为
,若
与直线
相交于点
,试探究在
轴上是否存在点
,使得以
为直径的圆恒过点
?若存在,求出点
的坐标,若不存在,说明理由.








(1)求动点


(2)已知点













已知动圆
与直线
相切且与圆
外切。
(1)求圆心
的轨迹
的方程;
(2)设第一象限内的点
在轨迹
上,若
轴上两点
,
,满足
且
. 延长
、
分别交轨迹
于
、
两点,若直线
的斜率
,求点
的坐标.



(1)求圆心


(2)设第一象限内的点















已知在平面直角坐标系中,坐标原点为
,点
,
、
两点分别在
轴和
轴上运动,并且满足
,
,动点
的轨迹为曲线
.
(1)求动点
的轨迹方程;
(2)作曲线
的任意一条切线(不含
轴)
,直线
与切线
相交于
点,直线
与切线
、
轴分别相交于
点与
点,试探究
的值是否为定值,若为定值请求出该定值;若不为定值请说明理由.










(1)求动点

(2)作曲线












已知点
,点
在
轴上,点
在
轴的正半轴上,且满足
,点
在直线
上,且满足
,
(Ⅰ)当点
在
轴上移动时,求点
的轨迹
的方程;
(Ⅱ)过点
作直线
与轨迹
交于
、
两点,
为
轴上一点,满足
,设线段
的中点为
,且
,求
的值.









(Ⅰ)当点




(Ⅱ)过点













已知点
,直线
,
为平面上的动点,过点
作直线的垂线,垂足为
,且
.
(1)求动点
的轨迹
的方程;
(2)设直线
与轨迹
交于两点,
、
,且
(
,且
为常数),过弦
的中点
作平行于
轴的直线交轨迹
于点
,连接
、
.试判断
的面积是否为定值,若是,求出该定值,若不是,请说明理由






(1)求动点


(2)设直线















在平面直角坐标系xOy中,已知点A(0,-1),B点在直线y = -3上,M点满足
,
,M点的轨迹为曲线C。
(1)求C的方程;
(2)P为C上的动点,l为C在P点处得切线,求O点到l距离的最小值。


(1)求C的方程;
(2)P为C上的动点,l为C在P点处得切线,求O点到l距离的最小值。
动点
在抛物线
上,过点
作
轴的垂线,垂足为
,设
.
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)设点
,过点
的直线交轨迹
于
(不同于点
)两点,设直线
的斜率分别为
,求
的取值范围.






(Ⅰ)求点


(Ⅱ)设点








动点
在抛物线
上,过点
作
垂直于
轴,垂足为
,设
.
(I)求点
的轨迹
的方程;
(II)设点
,过点
的直线
交轨迹于
两点,设直线
的斜率分别为
,求
的最小值.







(I)求点


(II)设点







动点
在抛物线
上,过点
作
垂直于
轴,垂足为
,设
.
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)设点
,过点
的直线
交轨迹
于
两点,直线
的斜率分别为
,求
的最小值.







(Ⅰ)求点


(Ⅱ)设点







