- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 根据焦点或准线写出抛物线的标准方程
- 根据定义求抛物线的标准方程
- + 根据抛物线上的点求标准方程
- 求抛物线的轨迹方程
- 求实际问题中的抛物线方程
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知点A,B是抛物线
上关于轴对称的两点,点E是抛物线C的准线与x轴的交点.
(1)若
是面积为4的直角三角形,求抛物线C的方程;
(2)若直线BE与抛物线C交于另一点D,证明:直线AD过定点.

(1)若

(2)若直线BE与抛物线C交于另一点D,证明:直线AD过定点.
过点(0,4),斜率为-1的直线与拋物线y2=2px(p>0)交于两点A,B,如果OA⊥OB(O为原点),求拋物线的标准方程及焦点坐标.
过抛物线
的焦点
的直线交抛物线于
两点,且
两点的纵坐标之积为
.
(1)求抛物线的方程;
(2)求
的值(其中
为坐标原点);
(3)已知点
,在抛物线上是否存在两点
、
,使得
?若存在,求出
点的纵坐标的取值范围;若不存在,则说明理由.





(1)求抛物线的方程;
(2)求


(3)已知点




