- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 根据焦点或准线写出抛物线的标准方程
- 根据定义求抛物线的标准方程
- + 根据抛物线上的点求标准方程
- 求抛物线的轨迹方程
- 求实际问题中的抛物线方程
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,有一块抛物线形状的钢板,计划将此钢板切割成等腰梯形
的形状,使得
都落在抛物线上,点
关于抛物线的轴对称,且
,抛物线的顶点到底边的距离是
,记
,梯形面积为
.

(1)以抛物线的顶点为坐标原点,其对称轴为
轴建立坐标系,使抛物线开口向下,求出该抛物线的方程;
(2)求面积
关于
的函数解析式,并写出其定义域;
(3)求面积
的最大值.








(1)以抛物线的顶点为坐标原点,其对称轴为

(2)求面积


(3)求面积

图(1)为东方体育中心,其设计方案侧面的外轮廓线如图(2)所示;曲线
是以点
为圆心的圆的一部分,其中
,曲线
是抛物线
的一部分;
且
恰好等于圆
的半径,
与圆相切且
.

(1)若要求
米,
米,求
与
的值;
(2)当
时,若要求
不超过45米,求
的取值范围.











(1)若要求




(2)当



如图,在平面直角坐标系
中,抛物线
的焦点为
,
为抛物线上异于原点的任意一点,以
为直径作圆
,当直线
的斜率为1时,
.

(1)求抛物线
的标准方程;
(2)过焦点
作
的垂线
与圆
的一个交点为
,
交抛物线于
,
(点
在点
,
之间),记
的面积为
,求
的最小值.









(1)求抛物线

(2)过焦点













