- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 根据焦点或准线写出抛物线的标准方程
- 根据定义求抛物线的标准方程
- + 根据抛物线上的点求标准方程
- 求抛物线的轨迹方程
- 求实际问题中的抛物线方程
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
的焦点为
,
为抛物线
上异于原点的任意一点,过点
的直线
交抛物线
于另一点
,交
轴的正半轴于点
,且有
.当点
的横坐标为3时,
为正三角形.
(Ⅰ)求抛物线
的方程;
(Ⅱ)若直线
,且
和抛物线
有且只有一个公共点
,试问直线
(
为抛物线
上异于原点的任意一点)是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.













(Ⅰ)求抛物线

(Ⅱ)若直线







已知倾斜角为
的直线经过抛物线
的焦点F,与抛物线G相交于A、B两点,且
.
(1)求抛物线G的方程;
(2)过点
的两条直线
、
分别交抛物线G于点C、D和 E、F,线段CD和EF的中点分别为M、N.如果直线
与
的倾斜角互余,求证:直线MN经过一定点.



(1)求抛物线G的方程;
(2)过点





设抛物线
的焦点为
,点
是
上一点,且
的中点坐标为
.
(1)求抛物线
的标准方程;
(2)动直线
过点
,且与抛物线
交于
两点,点
与点
关于
轴对称(点
与点
不重合),求证:直线
恒过定点.






(1)求抛物线

(2)动直线















设抛物线
的焦点为
,经过点
的动直线
交抛物线
于点
且
.
(1)求抛物线的方程;
(2)若
为坐标原点),且点
在抛物线
上,求直线
斜率;
(3)若点M是抛物线
的准线上的一点,直线MF,MA,MB斜率分别为
.求证:当
为定值时,
也为定值.







(1)求抛物线的方程;
(2)若




(3)若点M是抛物线




已知抛物线
过点
.
(1)求抛物线C的方程;
(2)求过点
的直线与抛物线
交于
两个不同的点(均与点
不重合).设直线
,
的斜率分别为
,求证:
为定值.


(1)求抛物线C的方程;
(2)求过点








已知抛物线
:
的焦点为
点
在该抛物线上,且
.
(1)求抛物线
的方程;
(2)直线
与
轴交于点E,与抛物线
相交于
,
两点, 自点
,
分别向直线
作垂线,垂足分别为
,记
的面积分别为
.试证明:
为定值.





(1)求抛物线

(2)直线












已知
为坐标原点,点
,
,
,动点
满足
,点
为线段
的中点,抛物线
:
上点
的纵坐标为
,
.
(1)求动点
的轨迹曲线
的标准方程及抛物线
的标准方程;
(2)若抛物线
的准线上一点
满足
,试判断
是否为定值,若是,求这个定值;若不是,请说明理由.













(1)求动点



(2)若抛物线




已知抛物线
过点
,
是抛物线
上不同两点,且
(其中
是坐标原点),直线
与
交于点
,线段
的中点为
.
(Ⅰ)求抛物线
的准线方程;
(Ⅱ)求证:直线
与
轴平行.











(Ⅰ)求抛物线

(Ⅱ)求证:直线


已知抛物线
过点
,
是抛物线
上异于点
的不同两点,且以线段
为直径的圆恒过点
.
(I)当点
与坐标原点
重合时,求直线
的方程;
(II)求证:直线
恒过定点,并求出这个定点的坐标.







(I)当点



(II)求证:直线
