- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 抛物线的定义
- 抛物线标准方程的形式
- + 抛物线标准方程的求法
- 根据焦点或准线写出抛物线的标准方程
- 根据定义求抛物线的标准方程
- 根据抛物线上的点求标准方程
- 求抛物线的轨迹方程
- 求实际问题中的抛物线方程
- 抛物线的顶点、开口方向
- 抛物线的范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
:
的焦点为
点
在该抛物线上,且
.
(1)求抛物线
的方程;
(2)直线
与
轴交于点E,与抛物线
相交于
,
两点, 自点
,
分别向直线
作垂线,垂足分别为
,记
的面积分别为
.试证明:
为定值.





(1)求抛物线

(2)直线












已知抛物线
的焦点F(1,0),O为坐标原点,A,B是抛物线C上异于 O的两点.
(1)求抛物线C的方程;
(2)若直线AB过点(8,0),求证:直线OA,OB的斜率之积为定值

(1)求抛物线C的方程;
(2)若直线AB过点(8,0),求证:直线OA,OB的斜率之积为定值
在直角坐标系
中,直线
与抛物线
交于
,
两点,且
.
(1)求
的方程;
(2)试问:在
轴的正半轴上是否存在一点
,使得
的外心在
上?若存在,求
的坐标;若不存在,请说明理由..






(1)求

(2)试问:在





已知点
,点
在
轴上,点
在
轴的正半轴上,且满足
,点
在直线
上,且满足
,
(Ⅰ)当点
在
轴上移动时,求点
的轨迹
的方程;
(Ⅱ)过点
作直线
与轨迹
交于
、
两点,
为
轴上一点,满足
,设线段
的中点为
,且
,求
的值.









(Ⅰ)当点




(Ⅱ)过点













已知抛物线
的焦点为
,
轴上方的点
在抛物线上,且
,直线
与抛物线交于
,
两点(点
,
与
不重合),设直线
,
的斜率分别为
,
.
(Ⅰ)求抛物线的方程;
(Ⅱ)当
时,求证:直线
恒过定点并求出该定点的坐标.















(Ⅰ)求抛物线的方程;
(Ⅱ)当


已知抛物线
过点
,
是抛物线
上异于点
的不同两点,且以线段
为直径的圆恒过点
.
(I)当点
与坐标原点
重合时,求直线
的方程;
(II)求证:直线
恒过定点,并求出这个定点的坐标.







(I)当点



(II)求证:直线

已知抛物线
:
的焦点为
,过
且斜率为
的直线
与抛物线
交于
,
两点,
在
轴的上方,且点
的横坐标为4.

(1)求抛物线
的标准方程;
(2)设点
为抛物线
上异于
,
的点,直线
与
分别交抛物线
的准线于
,
两点,
轴与准线的交点为
,求证:
为定值,并求出定值.













(1)求抛物线

(2)设点












已知点
,直线
,
为平面上的动点,过点
作直线的垂线,垂足为
,且
.
(1)求动点
的轨迹
的方程;
(2)设直线
与轨迹
交于两点,
、
,且
(
,且
为常数),过弦
的中点
作平行于
轴的直线交轨迹
于点
,连接
、
.试判断
的面积是否为定值,若是,求出该定值,若不是,请说明理由






(1)求动点


(2)设直线















已知抛物线
过点
(Ⅰ)求抛物线的方程和焦点坐标;
(Ⅱ)过点
的直线
与抛物线交于两点
,点
关于
轴的对称点为
,试判断直线
是否过定点,并加以证明.


(Ⅰ)求抛物线的方程和焦点坐标;
(Ⅱ)过点







已知抛物线
:
的焦点
,直线
与
轴的交点为
,与抛物线
的交点为
,且
.
(1)求
的值;
(2)已知点
为
上一点,
是
上异于点
的两点,且满足直线
和直线
的斜率之和为
,证明直线
恒过定点,并求出定点的坐标.









(1)求

(2)已知点








