- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 抛物线的定义
- 抛物线标准方程的形式
- + 抛物线标准方程的求法
- 根据焦点或准线写出抛物线的标准方程
- 根据定义求抛物线的标准方程
- 根据抛物线上的点求标准方程
- 求抛物线的轨迹方程
- 求实际问题中的抛物线方程
- 抛物线的顶点、开口方向
- 抛物线的范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
,过其焦点
的直线与抛物线相交于
、
两点,满足
.
(1)求抛物线
的方程;
(2)已知点
的坐标为
,记直线
、
的斜率分别为
,
,求
的最小值.





(1)求抛物线

(2)已知点







已知抛物线C:y2=2px(p>0)的焦点为F,若过点F且斜率为1的直线与抛物线相交于M,N两点,且|MN|=8.
(1)求抛物线C的方程;
(2)设直线l为抛物线C的切线,且l∥MN,P为l上一点,求
的最小值.
(1)求抛物线C的方程;
(2)设直线l为抛物线C的切线,且l∥MN,P为l上一点,求

已知抛物线的顶点为原点,焦点为
,过焦点的直线与抛物线交于
两点,过
的中点
作准线的垂线与抛物线交于点
,若
,则点
的坐标为__________.







如图,O为坐标原点,点F为抛物线C1:
的焦点,且抛物线C1上点M处的切线与圆C2:
相切于点Q.



(Ⅰ)当直线MQ的方程为
时,求抛物线C1的方程;
(Ⅱ)当正数p变化时,记S1 ,S2分别为△FMQ,△FOQ的面积,求
的最小值.





(Ⅰ)当直线MQ的方程为

(Ⅱ)当正数p变化时,记S1 ,S2分别为△FMQ,△FOQ的面积,求

已知抛物线的标准方程是
.
(1)求它的焦点坐标和准线方程;
(2)直线
过已知抛物线的焦点且倾斜角为45°,且与抛物线的交点为
,求
的长度.

(1)求它的焦点坐标和准线方程;
(2)直线


