刷题首页
题库
高中数学
题干
已知抛物线
的焦点为
,
轴上方的点
在抛物线上,且
,直线
与抛物线交于
,
两点(点
,
与
不重合),设直线
,
的斜率分别为
,
.
(Ⅰ)求抛物线的方程;
(Ⅱ)当
时,求证:直线
恒过定点并求出该定点的坐标.
上一题
下一题
0.99难度 解答题 更新时间:2019-06-07 05:54:41
答案(点此获取答案解析)
同类题1
在平面直角坐标系中,点
是直线
上的动点,定点
点
为
的中点,动点
满足
.
(1)求点
的轨迹
的方程
(2)过点
的直线交轨迹
于
两点,
为
上任意一点,直线
交
于
两点,以
为直径的圆是否过
轴上的定点?若过定点,求出定点的坐标;若不过定点,说明理由.
同类题2
已知抛物线
的焦点为
,点
为抛物线上一点,且
.
(1)求抛物线的方程;
(2)不过原点的直线
与抛物线交于不同两点
,若
,求
的值.
同类题3
已知定点
,定直线
的方程为
,点
是
上的动点,过点
与直线
垂直的直线与线段
的中垂线相交于点
,设点
的轨迹为曲线
.
(1)求曲线
的方程:
(2)点
,点
,过点
作直线
与曲线
相交于
、
两点,求证:
.
同类题4
设抛物线
的焦点为
,直线
与
交于
两点,线段
中点
的横坐标为2,且
.
(1)求
的方程;
(2)若
经过
,求
的方程.
同类题5
抛物线
(
)上有一点
M
,它的横坐标是3,它到焦点的距离是5,则此抛物线的方程为______.
相关知识点
平面解析几何
圆锥曲线
抛物线
抛物线标准方程的求法
根据定义求抛物线的标准方程
抛物线中的直线过定点问题