- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 抛物线的定义
- 抛物线标准方程的形式
- + 抛物线标准方程的求法
- 根据焦点或准线写出抛物线的标准方程
- 根据定义求抛物线的标准方程
- 根据抛物线上的点求标准方程
- 求抛物线的轨迹方程
- 求实际问题中的抛物线方程
- 抛物线的顶点、开口方向
- 抛物线的范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
的焦点
,抛物线上一点
点纵坐标为2,
.
(1)求抛物线的方程;
(2)已知抛物线
与直线
交于
两点,
轴上是否存在点
,使得当
变动时,总有
?说明理由.




(1)求抛物线的方程;
(2)已知抛物线







已知在平面直角坐标系中,坐标原点为
,点
,
、
两点分别在
轴和
轴上运动,并且满足
,
,动点
的轨迹为曲线
.
(1)求动点
的轨迹方程;
(2)作曲线
的任意一条切线(不含
轴)
,直线
与切线
相交于
点,直线
与切线
、
轴分别相交于
点与
点,试探究
的值是否为定值,若为定值请求出该定值;若不为定值请说明理由.










(1)求动点

(2)作曲线












已知抛物线C:y2=2px(p>0)的焦点F和椭圆
的右焦点重合,直线
过点F交抛物线于A、B两点.
(1)求抛物线C的方程;
(2)若直线
交y轴于点M,且
,m、n是实数,对于直线
,m+n是否为定值?
若是,求出m+n的值;否则,说明理由.


(1)求抛物线C的方程;
(2)若直线



若是,求出m+n的值;否则,说明理由.
已知抛物线E:x2=2py(p>0)的焦点为F,直线x=2与x轴的交点为M,与抛物线E的交点为N,且4|FN|=5|MN|.
(1)求抛物线E的方程;
(2)若直线y=kx+2与E交于A,B两点,C(0,-2),记直线CA,CB的斜率分别为k1,k2,求证:k12+k22-2k2为定值.
(1)求抛物线E的方程;
(2)若直线y=kx+2与E交于A,B两点,C(0,-2),记直线CA,CB的斜率分别为k1,k2,求证:k12+k22-2k2为定值.
根据抛物线的光学原理:平行于抛物线的轴的光线,经抛物线反射后,反射光线必经过焦点.然后求解此题:有一条光线沿直线
射到抛物线
(
)上的一点
,经抛物线反射后,反射光线所在直线的斜率为
.
(Ⅰ)求抛物线的标准方程;
(Ⅱ)过定点
的直线l与抛物线交于
两点,与直线
交于Q点,若
,
=
,求
的值.





(Ⅰ)求抛物线的标准方程;
(Ⅱ)过定点







在平面直角坐标系
中,抛物线
的准线为
,其焦点为F,点B是抛物线C上横坐标为
的一点,若点B到
的距离等于
.
(1)求抛物线C的方程,
(2)设A是抛物线C上异于顶点的一点,直线AO交直线
于点M,抛物线C在点A处的切线m交直线
于点N,求证:以点N为圆心,以
为半径的圆经过
轴上的两个定点.






(1)求抛物线C的方程,
(2)设A是抛物线C上异于顶点的一点,直线AO交直线




已知抛物线
过点
.
(1)求抛物线C的方程;
(2)求过点
的直线与抛物线
交于
两个不同的点(均与点
不重合).设直线
,
的斜率分别为
,求证:
为定值.


(1)求抛物线C的方程;
(2)求过点








已知抛物线
:
的焦点为
,点
在抛物线上,且
.
(1)求抛物线
的方程;
(2)若点
为抛物线上任意一点,过该点的切线为
,过点
作切线
的垂线,垂足为
,则点
是否在定直线上,若是,求定直线的方程;若不是,说明理由.





(1)求抛物线

(2)若点






已知定点
,横坐标不小于
的动点在
轴上的射影为
,若
.
(1)求动点
的轨迹
的方程;
(2)若点
不在直
线上,并且直线
与曲线
相交于
两个不同点.问是否存在常数
使得当
的值变化时,直线
斜率之和是一个定值.若存在,求出
的值;若不存在,请说明理由.





(1)求动点


(2)若点









已知动圆过点
,且在
轴上截得的弦长为4.
(1)求动圆圆心
的轨迹方程;
(2)过点
的直线
与曲线
交于点
,
,与
轴交于点
,设
,
,求证:
是定值.


(1)求动圆圆心

(2)过点









