- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 抛物线的定义
- 抛物线标准方程的形式
- + 抛物线标准方程的求法
- 根据焦点或准线写出抛物线的标准方程
- 根据定义求抛物线的标准方程
- 根据抛物线上的点求标准方程
- 求抛物线的轨迹方程
- 求实际问题中的抛物线方程
- 抛物线的顶点、开口方向
- 抛物线的范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
直线
与抛物线
交于
两点,且
,其中
为原点.
(1)求此抛物线的方程;
(2)当
时,过
分别作
的切线相交于点
,点
是抛物线
上在
之间的任意一点,抛物线
在点
处的切线分别交直线
和
于点
,求
与
的面积比.





(1)求此抛物线的方程;
(2)当














已知动圆过定点
,且在
轴上截得的弦长为4,记动圆圆心的轨迹为曲线C.
(Ⅰ)求直线
与曲线C围成的区域面积;
(Ⅱ)点
在直线
上,点
,过点
作曲线C的切线
、
,切点分别为
、
,证明:存在常数
,使得
,并求
的值.


(Ⅰ)求直线

(Ⅱ)点











已知抛物线
的焦点为
,抛物线
上的点
到
的距离为3.
(Ⅰ)求抛物线
的方程;
(Ⅱ)斜率存在的直线
与抛物线相交于相异两点
,
.若
的垂直平分线交
轴于点
,且
,求直线
方程.





(Ⅰ)求抛物线

(Ⅱ)斜率存在的直线








在平面直角坐标系
中,抛物线
:
,直线
与
交于
,
两点,
.
(1)求
的方程;
(2)斜率为
(
)的直线
过线段
的中点,与
交于
两点,直线
分别交直线
于
两点,求
的最大值.








(1)求

(2)斜率为










已知抛物线
(
)的焦点为
,以抛物线上一动点
为圆心的圆经过点
(Ⅰ)求
的值;
(Ⅱ)当点
的横坐标为1且位于第一象限时,过
作抛物线的两条弦
,且满足
.若直线AB恰好与圆
相切,求直线AB的方程.




A.若圆![]() ![]() |

(Ⅱ)当点





设抛物线的顶点在坐标原点,焦点F在
轴正半轴上,过点F的直线交抛物线于A,B两点,线段AB的长是8,AB的中点到
轴的距离是
.
(1)求抛物线的标准方程;
(2)在抛物线上是否存在不与原点重合的点P,使得过点P的直线交抛物线于另一点Q,满足
,且直线PQ与抛物线在点P处的切线垂直?并请说明理由.



(1)求抛物线的标准方程;
(2)在抛物线上是否存在不与原点重合的点P,使得过点P的直线交抛物线于另一点Q,满足

已知
是抛物线
的焦点,过
的直线交抛物线
于不同两点
,且
.
(1)求抛物线
的方程;
(2)过点
作
轴的垂线交直线
(
是原点)于
,过
作直线
的垂线与抛物线
的另一交点为
,
中点为
.
①求点
的纵坐标;
②求
的取值范围.






(1)求抛物线

(2)过点











①求点

②求

抛物线y2=2px(p>0)与直线y=x+1相切,A(x1,y1),B(x2,y2)(x1≠x2)是抛物线上两个动点,F为抛物线的焦点,且|AF|+|BF|=8.
(1)求p的值.
(2)线段AB的垂直平分线l与x轴的交点是否为定点?若是,求出交点坐标;若不是,说明理由.
(3)求直线l的斜率的取值范围.
(1)求p的值.
(2)线段AB的垂直平分线l与x轴的交点是否为定点?若是,求出交点坐标;若不是,说明理由.
(3)求直线l的斜率的取值范围.
已知抛物线x2=-2py(p>0)上纵坐标为-p的点到其焦点F的距离为3.
(1)求抛物线的方程;
(2)若直线l与抛物线以及圆x2+(y-1)2=1都相切,求直线l的方程.
(1)求抛物线的方程;
(2)若直线l与抛物线以及圆x2+(y-1)2=1都相切,求直线l的方程.