- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 抛物线的定义
- 抛物线标准方程的形式
- + 抛物线标准方程的求法
- 根据焦点或准线写出抛物线的标准方程
- 根据定义求抛物线的标准方程
- 根据抛物线上的点求标准方程
- 求抛物线的轨迹方程
- 求实际问题中的抛物线方程
- 抛物线的顶点、开口方向
- 抛物线的范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
:
的焦点为
,过抛物线上一点
作抛物线
的切线
交
轴于点
,交
轴于点
,当
时,
.
(1)判断
的形状,并求抛物线
的方程;
(2)若
,
两点在抛物线
上,且满足
,其中点
,若抛物线
上存在异于
、
的点
,使得经过
、
、
三点的圆和抛物线在点
处有相同的切线,求点
的坐标.












(1)判断


(2)若














已知抛物线
的焦点为
,过点
的直线
与抛物线有两个不同的交点
(其中点
在x轴的上方).
(1)若点
的纵坐标为
且点
到
轴的距离等于
,求此时抛物线的标准方程;
(2)设直线
的斜率为
,直线
的斜率为
,直线
的斜率为
(
为坐标原点),若
,求
的取值范围.






(1)若点





(2)设直线









双曲线
的离心率为
,抛物线C:x2=2py(p>0)的焦点在双曲线的顶点上.
(1)求抛物线C的方程;
(2)过M(-1,0)的直线l与抛物线C交于E,F两点,又过E,F作抛物线C的切线l1,l2,当l1⊥l2时,求直线l的方程.


(1)求抛物线C的方程;
(2)过M(-1,0)的直线l与抛物线C交于E,F两点,又过E,F作抛物线C的切线l1,l2,当l1⊥l2时,求直线l的方程.
已知抛物线
:
的焦点
与椭圆
:
的一个焦点重合,点
在抛物线上,过焦点
的直线
交抛物线于
、
两点.
(Ⅰ)求抛物线
的方程以及
的值;
(Ⅱ)记抛物线的准线
与
轴交于点
,试问是否存在常数
,使得
且
都成立?若存在,求出实数
的值;若不存在,请说明理由.










(Ⅰ)求抛物线


(Ⅱ)记抛物线的准线







如图所示,抛物线
与直线
相切于点
.

(1)求
满足的关系式,并用
表示点
的坐标;
(2)设
是抛物线的焦点,若以
为直角顶角的
的面积等于
,求抛物线
的标准方程.




(1)求



(2)设





已知
是抛物线
上一点,经过点
的直线
与抛物线
交于
两点(不同于点
),直线
分别交直线
于点
.
(1)求抛物线方程及其焦点坐标,准线方程;
(2)若
,求直线
的方程;
(3)已知
为原点,求证:
为定值.










(1)求抛物线方程及其焦点坐标,准线方程;
(2)若


(3)已知


如图,在平面直角坐标系
中,点
,
在抛物线
上.

(1)求
,
的值;
(2)过点
作
垂直于
轴,
为垂足,直线
与抛物线的另一交点为
,点
在直线
上.若
,
,
的斜率分别为
,
,
,且
,求点
的坐标.







(1)求


(2)过点
















已知抛物线
:
(
)的焦点为
,在抛物线
上存在点
,使得点
关于
的对称点
,且
.
(1)求抛物线
的方程;
(2)若直线
与抛物线
的另一个交点为
,且以
为直径的圆恰好经过
轴上一点
,求点
的坐标.










(1)求抛物线

(2)若直线







已知抛物线
的顶点在原点,
为抛物线的焦点.
(1)求抛物线
的方程;
(2)过点
的直线
与抛物线
交于
两点,与圆
交于
两点,且
位于线段
上,若
,求直线
的方程.


(1)求抛物线

(2)过点









