刷题首页
题库
高中数学
题干
已知
是抛物线
上一点,经过点
的直线
与抛物线
交于
两点(不同于点
),直线
分别交直线
于点
.
(1)求抛物线方程及其焦点坐标,准线方程;
(2)若
,求直线
的方程;
(3)已知
为原点,求证:
为定值.
上一题
下一题
0.99难度 解答题 更新时间:2017-03-06 10:39:03
答案(点此获取答案解析)
同类题1
已知抛物线
的焦点为
,准线为
,
与
交于
两点,与
轴的负半轴交于点
.
(1)若
被
所截得的弦长为
,求
;
(2)判断直线
与
的交点个数,并说明理由.
同类题2
已知曲线
的方程为
.
(1)当
时,试确定曲线
的形状及其焦点坐标;
(2)若直线
交曲线
于点
、
,线段
中点的横坐标为
,试问此时曲线
上是否存在不同的两点
、
关于直线
对称?
(3)当
为大于1的常数时,设
是曲线
上的一点,过点
作一条斜率为
的直线
,又设
为原点到直线
的距离,
分别为点
与曲线
两焦点的距离,求证
是一个定值,并求出该定值.
同类题3
若方程
的三个实根可分别作为一椭圆、一双曲线、一抛物线的离心率,则
的取值范围是
A.
B.
C.
D.
同类题4
已知椭圆C:
=1(a>b>0),点A、B分别是椭圆C的左顶点和上顶点,直线AB与圆G:x
2
+y
2
=
(c是椭圆的半焦距)相离,P是直线AB上一动点,过点P作圆G的两切线,切点分别为M、N.
(1)若椭圆C经过两点
、
,求椭圆C的方程;
(2)当c为定值时,求证:直线MN经过一定点E,并求
·
的值(O是坐标原点);
(3)若存在点P使得△PMN为正三角形,试求椭圆离心率的取值范围..
相关知识点
平面解析几何
圆锥曲线
抛物线标准方程的求法
直线与抛物线的位置关系