- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- + 抛物线
- 抛物线的定义
- 抛物线标准方程的形式
- 抛物线标准方程的求法
- 抛物线的顶点、开口方向
- 抛物线的范围
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知拋物线C:
经过点
,其焦点为F,M为抛物线上除了原点外的任一点,过M的直线l与x轴、y轴分别交于A,B两点.
Ⅰ
求抛物线C的方程以及焦点坐标;
Ⅱ
若
与
的面积相等,证明直线l与抛物线C相切.








已知抛物线
的焦点为
,点
是直线
与
轴的交点,若直线
与抛物线
在第四象限的交点为
,与抛物线
的准线交于点
,若
,则点
的坐标为__________ .












已知
为坐标原点,抛物线
:
与直线
:
交于点
,
两点,且
.
(1)求抛物线
的方程;
(2)线段
的中点为
,过点
且斜率为
的直线交抛物线
于
,
两点,若直线
,
分别与直线
交于
,
两点,当
时,求斜率
的值.








(1)求抛物线

(2)线段














已知抛物线
,直线
经过抛物线
的焦点,且垂直于抛物线的对称轴,
与抛物线两交点间的距离为4.
(1)求抛物线
的方程;
(2)已知
,过
的直线
与抛物线
相交于
两点,设直线
与
的斜率分别为
和
,求证:
为定值,并求出定值.




(1)求抛物线

(2)已知










已知抛物线
的焦点为F,点
在此抛物线上,
,不过原点的直线
与抛物线C交于A,B两点,以AB为直径的圆M过坐标原点.
(1)求抛物线C的方程;
(2)证明:直线
恒过定点;
(3)若线段AB中点的纵坐标为2,求此时直线
和圆M的方程.




(1)求抛物线C的方程;
(2)证明:直线

(3)若线段AB中点的纵坐标为2,求此时直线

已知点
是抛物线
的焦点,
是抛物线
在第一象限内的点,且
,
(I) 求
点的坐标;
(II)以
为圆心的动圆与
轴分别交于两点
,延长
分别交抛物线
于
两点;
①求直线
的斜率;
②延长
交
轴于点
,若
,求
的值.





(I) 求

(II)以






①求直线

②延长





在平面直角坐标系
中,已知抛物线
:
,过抛物线焦点
且与
轴垂直的直线与抛物线相交于
、
两点,且
的周长为
.
(1)求抛物线
的方程;
(2)若直线
过焦点
且与抛物线
相交于
、
两点,过点
、
分别作抛物线
的切线
、
,切线
与
相交于点
,求:
的值.









(1)求抛物线

(2)若直线














已知抛物线
经过点
,过
作两条不同直线
,其中直线
关于直线
对称.
(Ⅰ)求抛物线
的方程及准线方程;
(Ⅱ)设直线
分别交抛物线
于
两点(均不与
重合),若以线段
为直径的圆与抛物线
的准线相切,求直线
的方程.






(Ⅰ)求抛物线

(Ⅱ)设直线






