- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- + 抛物线
- 抛物线的定义
- 抛物线标准方程的形式
- 抛物线标准方程的求法
- 抛物线的顶点、开口方向
- 抛物线的范围
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
:
上横坐标为4的点到焦点的距离为5.

(1)求抛物线
的方程;
(2)设直线
与抛物线
交于两点
、
,且
,
是弦
中点,过
作平行于
轴的直线交抛物线
于点
,得到
,再分别过弦
、
的中点作平行于
轴的直线依次交抛物线
于点
、
,得到
和
,按此方法继续下去,解决下列问题:
①求证:
;
②计算
的面积
;
③根据
的面积
的计算结果,写出
、
的面积,请设计一种求抛物线
与线段
所围成封闭图形面积的方法,并求此封闭图形的面积.



(1)求抛物线

(2)设直线




















①求证:

②计算


③根据






如图,已知双曲线









(1)求双曲线

(2)过










已知动圆过定点P(1,0),且与定直线l:x=﹣1相切.
(1)求动圆圆心的轨迹M的方程;
(2)设过点P,且倾斜角为120°的直线与曲线M相交于A,B两点,A,B在直线l上的射影是A1,B1.
①求梯形AA1B1B的面积;
②若点C是线段A1B1上的动点,当△ABC为直角三角形时,求点C的坐标.
(1)求动圆圆心的轨迹M的方程;
(2)设过点P,且倾斜角为120°的直线与曲线M相交于A,B两点,A,B在直线l上的射影是A1,B1.
①求梯形AA1B1B的面积;
②若点C是线段A1B1上的动点,当△ABC为直角三角形时,求点C的坐标.
已知抛物线
和
的焦点分别为
,
,
,
,交于
,
两点(
为坐标原点),且
.
(Ⅰ)求抛物线
的方程;
(Ⅱ)过点
的直线交
,下半部分于点
,交
的左半部分于点
,点
的坐标为
,求
面积的最小值.










(Ⅰ)求抛物线

(Ⅱ)过点








已知抛物线
上一点
到焦点
的距离为
.
(l)求抛物线
的方程;
(2)抛物线上一点
的纵坐标为1,过点
的直线与抛物线
交于
两个不同的点(均与点
不重合),设直线
的斜率分别为
,求证:
为定值.




(l)求抛物线

(2)抛物线上一点








如图,已知抛物线
,其焦点到准线的距离为2,圆
,直线
与圆和抛物线自左至右顺次交于四点
、
、
、
,
(1)若线段
、
、
的长按此顺序构成一个等差数列,求正数
的值;
(2)若直线
过抛物线焦点且垂直于直线
,直线
与抛物线交于点
、
,设
、
的中点分别为
、
,求证:直线
过定点.







(1)若线段




(2)若直线











已知抛物线
:
的焦点为
,其准线
:
与
轴的交点为
,过点
的直线
与抛物线
交于
两点.
(1)求抛物线
的方程;
(2)点
关于
轴的对称点为
,证明:存在实数
,使得
.











(1)求抛物线

(2)点




