已知分别是直线上的两个动点,线段的长为的中点.
(1)求动点的轨迹的方程;
(2)过点任意作直线(与轴不垂直),设与(1)中轨迹交于两点,与轴交于点.若,证明:为定值.
当前题号:1 | 题型:解答题 | 难度:0.99
已知椭圆的的右顶点为A,离心率,过左焦点作直线与椭圆交于点P,Q,直线AP,AQ分别与直线交于点
(Ⅰ)求椭圆的方程;
(Ⅱ)证明以线段为直径的圆经过焦点
当前题号:2 | 题型:解答题 | 难度:0.99
如图,在平面直角坐标系中,椭圆的左、右焦点分别为.已知都在椭圆上,其中为椭圆的离心率.
(1)求椭圆的方程;
(2)设是椭圆上位于轴上方的两点,且直线与直线平行,交于点P.
(i)若,求直线的斜率;
(ii)求证:是定值.
当前题号:3 | 题型:解答题 | 难度:0.99
已知抛物线的焦点为F,以点为圆心,|AF|为半径的圆在x轴的上方与抛物线交于M、N两点.
(I)求证:点A在以M、N为焦点,且过点F的椭圆上;
(II)设点P为MN的中点,是否存在这样的a,使得|FP|是|FM|与|FN|的等差中项?如果存在,求出实数a的值;如果不存在,请说明理由.
当前题号:4 | 题型:解答题 | 难度:0.99

设椭圆其相应于焦点的准线方程为.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知过点倾斜角为的直线交椭圆两点,求证:
;
(Ⅲ)过点作两条互相垂直的直线分别交椭圆,求的最小值
当前题号:5 | 题型:解答题 | 难度:0.99
已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线 C
(Ⅰ)求C的方程;
(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.
当前题号:6 | 题型:解答题 | 难度:0.99
已知椭圆的一个焦点与抛物线的焦点重合,且椭圆短轴的两个端点与构成正三角形.
(1)求椭圆的方程;
(2)若过点的直线与椭圆交于不同两点,试问在轴上是否存在定点,使恒为定值? 若存在,求出的坐标及定值;若不存在,请说明理由.
当前题号:7 | 题型:解答题 | 难度:0.99
已知以原点为中心的椭圆的一条准线方程为,离心率是椭圆上的动点.

(Ⅰ)若的坐标分别是,求的最大值;
(Ⅱ)如图,点的坐标为是圆上的点,是点轴上的射影,点满足条件:,求线段的中点的轨迹方程.
当前题号:8 | 题型:解答题 | 难度:0.99
已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线是抛物线的一条切线.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的动直线L交椭圆C A.B两点.问:是否存在一个定点T,使得以AB为直径的圆恒过点T ? 若存在,求点T坐标;若不存在,说明理由.
当前题号:9 | 题型:解答题 | 难度:0.99
椭圆的左、右焦点分别是,离心率为,过且垂直于轴的直线被椭圆截得的线段长为
(Ⅰ)求椭圆的方程;
(Ⅱ)点是椭圆上除长轴端点外的任一点,连接,设的角平分线的长轴于点,求的取值范围;
(Ⅲ)在(Ⅱ)的条件下,过点作斜率为的直线,使与椭圆有且只有一个公共点,设直线的斜率分别为。若,试证明为定值,并求出这个定值。
当前题号:10 | 题型:解答题 | 难度:0.99