刷题首页
题库
高中数学
题干
椭圆
:
的左、右焦点分别是
,离心率为
,过
且垂直于
轴的直线被椭圆
截得的线段长为
。
(Ⅰ)求椭圆
的方程;
(Ⅱ)点
是椭圆
上除长轴端点外的任一点,连接
,设
的角平分线
交
的长轴于点
,求
的取值范围;
(Ⅲ)在(Ⅱ)的条件下,过点
作斜率为
的直线
,使
与椭圆
有且只有一个公共点,设直线的
斜率分别为
。若
,试证明
为定值,并求出这个定值。
上一题
下一题
0.99难度 解答题 更新时间:2013-07-18 09:57:10
答案(点此获取答案解析)
同类题1
设椭圆
的上焦点与抛物线
的焦点相同,离心率为
,则此椭圆方程为( )
A.
B.
C.
D.
同类题2
已知椭圆
(
)的离心率为
,左、右焦点分别为
、
,点
在椭圆
上,且
,
的面积为
.
(1)求椭圆
的方程;
(2)直线
(
)与椭圆
相交于
,
两点,点
,记直线
,
的斜率分别为
,
,当
最大时,求直线
的方程.
同类题3
已知椭圆
的离心率为
,过右焦点
且斜率为
的直线与
相交于
两点.若
,则
A.1
B.
C.
D.2
同类题4
已知椭圆
的离心率为
,且过点
(Ⅰ)求椭圆
的方程;
(Ⅱ)设直线
与圆
相切于点
,且
与椭圆
只有一个公共点
.
①求证:
;
②当
为何值时,
取得最大值?并求出最大值.
同类题5
已知椭圆
的一个焦点与抛物线
的焦点重合,且椭圆
的离心率为
.
(1)求椭圆
的标准方程;
(2)直线
交椭圆
于
、
两点,线段
的中点为
,直线
是线段
的垂直平分线,求证:直线
过定点,并求出该定点的坐标.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中的定值问题