刷题首页
题库
高中数学
题干
已知椭圆
的右焦点为
,且点
在椭圆
C
上.
(1)求椭圆
C
的标准方程;
(2)过椭圆
上异于其顶点的任意一点
Q
作圆
的两条切线,切点分别为
不在坐标轴上),若直线
在
x
轴,
y
轴上的截距分别为
,证明:
为定值;
(3)若
是椭圆
上不同两点,
轴,圆
E
过
,且椭圆
上任意一点都不在圆
E
内,则称圆
E
为该椭圆的一个内切圆,试问:椭圆
是否存在过焦点
F
的内切圆?若存在,求出圆心
E
的坐标;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-06 09:36:24
答案(点此获取答案解析)
同类题1
椭圆
的离心率为
而且过点
,其长轴的左右端点分别为
,
,直线
交椭圆于
,
两点.
(1)求椭圆的标准方程;
(2)设直线
,
的斜率分别为
,
,若
,求
的值.
同类题2
已知椭圆
过点
,且其中一个焦点的坐标为
.
(1)求椭圆
的方程;
(2)若经过
的直线
(与
轴不重合)与椭圆交于
两点,在
轴上是否存在点
使得
为定值?若存在,求岀点
的坐标;若不存在,请说明理由.
同类题3
已知椭圆
:
的左右焦点分别为
,
,左顶点为
,上顶点为
,
的面积为
.
(1)求椭圆
的方程;
(2)设直线
:
与椭圆
相交于不同的两点
,
,
是线段
的中点.若经过点
的直线
与直线
垂直于点
,求
的取值范围.
同类题4
已知点
在椭圆
C
:
上,
A
,
B
是长轴的两个端点,且
.
(Ⅰ)求椭圆
C
的标准方程;
(Ⅱ)若直线
CD
的斜率为2,以
E
(1,0)为圆心的圆与直线
CD
相切,且切点为线段
CD
的中点,求该圆的方程.
同类题5
已知椭圆
离心率等于
,
、
是椭圆上的两点.
(1)求椭圆
的方程;
(2)
是椭圆上位于直线
两侧的动点.当
运动时,满足
,试问直线
的斜率是否为定值?如果为定值,请求出此定值;如果不是定值,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
椭圆中存在定点满足某条件问题