刷题首页
题库
高中数学
题干
已知椭圆
,且椭圆
C
上恰有三点在集合
中.
(1)求椭圆
C
的方程;
(2)若点
O
为坐标原点,直线
AB
与椭圆交于
A
、
B
两点,且满足
,试探究:点
O
到直线
AB
的距离是否为定值.如果是,请求出定值:如果不是,请明说理由.
(3)在(2)的条件下,求
面积的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-06 09:32:12
答案(点此获取答案解析)
同类题1
已知长度为
的线段
的两个端点
、
分别在
轴和
轴上运动,动点
满足
,设动点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
且斜率不为零的直线
与曲线
交于两点
、
,在
轴上是否存在定点
,使得直线
与
的斜率之积为常数.若存在,求出定点
的坐标以及此常数;若不存在,请说明理由.
同类题2
椭圆
:
的左右焦点分别为
,
,左右顶点分别为
,
,
为椭圆
上的动点(不与
,
重合),且直线
与
的斜率的乘积为
.
(1)求椭圆
的方程;
(2)过
作两条互相垂直的直线
与
(均不与
轴重合)分别与椭圆
交于
,
,
,
四点,线段
、
的中点分别为
、
,求证:直线
过定点,并求出该定点坐标.
同类题3
已知点
在椭圆
上,动点
都在椭圆上,且直线
不经过原点
,直线
经过弦
的中点.
(1)求椭圆
的方程;
(2)求直线
的斜率.
同类题4
已知椭圆
的两焦点为
,
,且过点
,直线
交曲线
于
,
两点,
为坐标原点.
(1)求椭圆
的标准方程;
(2)若
不过点
且不平行于坐标轴,记线段
的中点为
,求证:直线
的斜率与
的斜率的乘积为定值;
(3)若直线
过点
,求
面积的最大值,以及取最大值时直线
的方程.
同类题5
已知椭圆
的两个焦点为
、
,且经过
点
,一组斜率为
的直线与椭圆
都相交于不同两点
.
(1)求椭圆
的方程;
(2)证明:线段
的中点都有在同一直线
上;
(3)对于(2)中的直线
,设
与椭圆
交于两点
,试探究椭圆上使
面积为
的点
有几个?证明你的结论.(不必具体求出
点的坐标)
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
椭圆中的定值问题