刷题首页
题库
高中数学
题干
已知椭圆
:
的离心率
,左顶点为
.过点
作直线
交椭圆
于另一点
,交
轴于点
,点
为坐标原点.
(1)求椭圆
的方程:
(2)已知
为
的中点,是否存在定点
,对任意的直线
,
恒成立?若存在,求出点
的坐标;若不存在说明理由;
(3)过
点作直线
的平行线与椭圆
相交,
为其中一个交点,求
的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-06 10:22:10
答案(点此获取答案解析)
同类题1
已知椭圆
:
的左右焦点分别为
、
,上顶点为
B
,
O
为坐标原点,且向量
与
的夹角为
.
求椭圆
的方程;
设
,点
P
是椭圆
上的动点,求
的最大值和最小值;
设不经过点
B
的直线
l
与椭圆
相交于
M
、
N
两点,且直线
BM
、
BN
的斜率之和为1,证明:直线
l
过定点.
同类题2
椭圆
(
)的左、右焦点分别为
,
在椭圆上,
的周长为
,面积的最大值为2.
(1)求椭圆
的方程;
(2)直线
(
)与椭圆
交于
,连接
,
并延长交椭圆
于
,连接
,探索
与
的斜率之比是否为定值并说明理由.
同类题3
已知椭圆
的一个顶点是
,离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知矩形
的四条边都与椭圆
相切,设直线AB方程为
,求矩形
面积的最小值与最大值.
同类题4
设椭圆
:
的离心率与双曲线
的离心率互为倒数,且椭圆的长轴长为4.
(1)求椭圆
的方程;
(2)若直线
交椭圆
于
,
两点,
为椭圆
上一点,求
面积的最大值.
同类题5
已知椭圆
的方程为
,点
为长轴的右端点.
为椭圆
上关于原点对称的两点.直线
与直线
的斜率
满足:
.
(1)求椭圆
的标准方程;
(2)若直线
与圆
相切,且与椭圆
相交于
两点,求证:以线段
为直径的圆恒过原点.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
求直线与椭圆的交点坐标