- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- + 圆锥曲线
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(Ⅰ)平面直角坐标系
中,倾斜角为
的直线
过点
,以原点
为极点,
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)写出直线
的参数方程(
为常数)和曲线
的直角坐标方程;
(2)若直线
与
交于
、
两点,且
,求倾斜角
的值.
(Ⅱ)已知函数
.
(1)若函数
的最小值为5,求实数
的值;
(2)求使得不等式
成立的实数
的取值范围.








(1)写出直线



(2)若直线






(Ⅱ)已知函数

(1)若函数


(2)求使得不等式


已知点
,点
是直线
上的动点,过
作直线
,
,线段
的垂直平分线与
交于点
.
(1)求点
的轨迹
的方程;
(2)若点
是直线
上两个不同的点,且
的内切圆方程为
,直线
的斜率为
,求
的取值范围.









(1)求点


(2)若点







已知抛物线C:
,过点
的动直线l与C相交于
两点,抛物线C在点A和点B处的切线相交于点Q.
(Ⅰ)写出抛物线的焦点坐标和准线方程;
(Ⅱ)求证:点Q在直线
上; 



(Ⅰ)写出抛物线的焦点坐标和准线方程;
(Ⅱ)求证:点Q在直线


已知抛物线
:
,定点
(常数
)的直线
与曲线
相交于
、
两点.
(1)若点
的坐标为
,求证:
(2)若
,以
为直径的圆的位置是否恒过一定点?若存在,求出这个定点,若不存在,请说明理由.








(1)若点



(2)若

