- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- + 圆锥曲线
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
的焦点为F,过F的直线交抛物线于A、B的两点,过A、B两点分别作抛物线的切线,设其交点为M.
(Ⅰ)设
,试用
表示点M的坐标.
(Ⅱ)
是否为定值,如果是,请求出定值,如果不是,请说明理由.
(III)设△ABM的面积为
,试确定
的最小值.

(Ⅰ)设


(Ⅱ)

(III)设△ABM的面积为


已知抛物线
,点
是其准线与
轴的交点,过
的直线
与抛物线
交于
、
两点,
为抛物线
的焦点.当线段
的中点在直线
上时,求直线
的方程,并求出此时
的面积.














设F是抛物线G:

(1)求抛物线G的方程;
(2)设A、B为抛物线G上异于原点的两点,且满足FA⊥FB,延长AF、BF分别交抛物线G于点C、D,求四边形ABCD面积的最小值.