已知斜三棱柱的侧面与底面ABC垂直,侧棱与底面所在平面成角,

求证:平面平面
求二面角的余弦值.
当前题号:1 | 题型:解答题 | 难度:0.99
如图所示,在等腰梯形ABCD中,,E,F为AB的三等分点,且分别沿DE、CF折起到A、B两点重合,记为点P.
证明:平面平面PEF;
,求PD与平面PFC所成角的正弦值.
当前题号:2 | 题型:解答题 | 难度:0.99
如图所示,四棱锥的底面是边长为的正方形,侧棱,则它的5个面中,互相垂直的面有__________对.
当前题号:3 | 题型:填空题 | 难度:0.99
如图所示的几何体是由棱台和棱锥拼接而成的组合体,其底面四边形是边长为的菱形,且平面

)求证:平面平面
)求二面角的余弦值.
当前题号:4 | 题型:解答题 | 难度:0.99
已知五边形ABECD有一个直角梯形ABCD与一个等边三角形BCE构成,如图1所示,,且,将梯形ABCD沿着BC折起,形成如图2所示的几何体,且平面BE
A.
求证:平面平面ADE;
求二面角的平面角的余弦值.
当前题号:5 | 题型:解答题 | 难度:0.99
如图,在四边形中,,点上,且,现将沿折起,使点到达点的位置,且与平面所成的角为

(1)求证:平面平面
(2)求二面角的余弦值.
当前题号:6 | 题型:解答题 | 难度:0.99
如图所示,在多面体ABCDEF中,四边形ADEF为正方形,AD∥BC,AD⊥AB,AD=2BC=1.

(1)证明:平面ADEF⊥平面AB
A.
(2)若AF⊥平面ABCD,二面角A-BC-E为30°,三棱锥A-BDF的外接球的球心为O,求二面角A-CD-O的余弦值.
当前题号:7 | 题型:解答题 | 难度:0.99
已知五边形ABECD由一个直角梯形ABCD与一个等边三角形BCE构成,如图1所示,AB丄BC,AB//CD,且AB=2C
A.将梯形ABCD沿着BC折起,如图2所示,且AB丄平面BEB.

(1)求证:平面ABE丄平面ADE;
(2)若AB=BC,求二面角A-DE-B的余弦值.
当前题号:8 | 题型:解答题 | 难度:0.99
在几何体中,底面为菱形,相交于点,四边形为直角梯形,,面.

(1)证明:面
(2)求二面角的余弦值.
当前题号:9 | 题型:解答题 | 难度:0.99
如图,正方形的边长为2,分别为的中点,交于点,将沿折起到的位置,使平面平面

(Ⅰ)求证:平面平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)判断线段上是否存在点,使平面?若存在,求出的值;若不存在,说明理由.
当前题号:10 | 题型:解答题 | 难度:0.99