- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- + 线面垂直的判定
- 判断线面是否垂直
- 证明线面垂直
- 补全线面垂直的条件
- 点面距离
- 线面距离
- 面面距离
- 线面角
- 面面垂直的判定
- 二面角
- 线面垂直的性质
- 面面垂直的性质
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图1,等腰梯形ABCD中,
,
,
,O为BE中点,F为BC中点.将
沿BE折起到
的位置,如图2.
(1)证明:
平面
;
(2)若平面
平面BCDE,求点F到平面
的距离.







(1)证明:


(2)若平面


如图1,平面四边形ABCD中,
,
,
且BC=CD.将
CBD沿BD折成如图2所示的三棱锥
,使二面角
的大小为
.

(1)证明:
;
(2)求直线BC'与平面C'AD所成角的正弦值.








(1)证明:

(2)求直线BC'与平面C'AD所成角的正弦值.
已知三棱锥M-ABC中,MA=MB=MC=AC=
,AB=BC=2,O为AC的中点,点N在边BC上,且
.

(1)证明:BO
平面AMC;
(2)求二面角N-AM-C的正弦值.



(1)证明:BO

(2)求二面角N-AM-C的正弦值.
如果四面体的四条高交于一点,则该点称为四面体的垂心,该四面体称为垂心四面体.

(1)证明:如果四面体的对棱互相垂直,则该四面体是垂心四面体;反之亦然.
(2)给出下列四面体
①正三棱锥;
②三条侧棱两两垂直;
③高在各面的射影过所在面的垂心;
④对棱的平方和相等.
其中是垂心四面体的序号为 .

(1)证明:如果四面体的对棱互相垂直,则该四面体是垂心四面体;反之亦然.
(2)给出下列四面体
①正三棱锥;
②三条侧棱两两垂直;
③高在各面的射影过所在面的垂心;
④对棱的平方和相等.
其中是垂心四面体的序号为 .
如图,在三棱锥
中,
平面
,且
,

(1)证明:三棱锥
为鳖臑;
(2)若
为棱
的中点,求二面角
的余弦值.注:在《九章算术》中鳖臑是指四面皆为直角三角形的三棱锥.






(1)证明:三棱锥

(2)若


