- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- + 线面垂直的判定
- 判断线面是否垂直
- 证明线面垂直
- 补全线面垂直的条件
- 点面距离
- 线面距离
- 面面距离
- 线面角
- 面面垂直的判定
- 二面角
- 线面垂直的性质
- 面面垂直的性质
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,长方体ABCD﹣A1B1C1D1中,AB=BC=4,BB1=2
,点E、F、M分别为C1D1,A1D1,B1C1的中点,过点M的平面α与平面DEF平行,且与长方体的面相交,交线围成一个几何图形.

(1)在图1中,画出这个几何图形,并求这个几何图形的面积(不必说明画法与理由)
(2)在图2中,求证:D1B⊥平面DEF.


(1)在图1中,画出这个几何图形,并求这个几何图形的面积(不必说明画法与理由)
(2)在图2中,求证:D1B⊥平面DEF.
点
、
、
分别是正方体
的棱
,
,
的中点,则下列命题中的真命题是__________(写出所有真命题的序号).
①以正方体的顶点为顶点的三棱锥的四个面中最多可以四个面都是直角三角形;
②点
在直线
上运动时,总有
;
③点
在直线
上运动时,三棱锥
的体积是定值;
④若
是正方体的面
,(含边界)内一动点,且点
到点
和
的距离相等,则点
的轨迹是一条线段.







①以正方体的顶点为顶点的三棱锥的四个面中最多可以四个面都是直角三角形;
②点



③点



④若






如图所示,直线PA垂直于
所在的平面,
内接于
,且AB为
的直径,点M为线段PB的中点,点Q是线段PC上异于端点的动点.现有结论:①
;②
平面APC;③点B到平面PAC的距离等于线段BC的长;④异面直线BC与AQ所成的角为定值.其中正确的是( )








A.①② | B.①②③④ | C.① | D.②③ |
如图,四棱锥S-ABCD的底面是边长为2的正方形,每条侧棱的长都是底面边长的
倍,P为侧棱SD上的点.

(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角P-AC-D的大小.


(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角P-AC-D的大小.