- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面
- 平面的基本性质
- 平行公理
- 异面直线
- + 异面直线所成的角
- 异面直线所成的角的概念及辨析
- 证明异面直线垂直
- 求异面直线所成的角
- 由异面直线所成的角求其他量
- 线面关系
- 面面关系
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,三棱锥P﹣ABC中,PC⊥平面ABC,PC=3,∠ACB=
.D,E分别为线段AB,BC上的点,且CD=DE=
,CE=2EB=2.

(Ⅰ)证明:DE⊥平面PCD
(Ⅱ)求锐二面角A﹣PD﹣C的余弦值.



(Ⅰ)证明:DE⊥平面PCD
(Ⅱ)求锐二面角A﹣PD﹣C的余弦值.
如图,已知四棱锥P﹣ABCD的底面是菱形,∠BCD=60°,AB=PB=PD=2,PC=
,AC与BD交于O点,E,H分别为PA,OC的中点.

(1)求证:PH⊥平面ABCD;
(2)求直线CE与平面PAB所成角的正弦值.


(1)求证:PH⊥平面ABCD;
(2)求直线CE与平面PAB所成角的正弦值.
如图,ABCD是块矩形硬纸板,其中AB=2AD,AD=
,E为DC的中点,将它沿AE折成直二面角D-AE-B.

(1)求证:AD⊥平面BDE;
(2)求二面角B-AD-E的余弦值.


(1)求证:AD⊥平面BDE;
(2)求二面角B-AD-E的余弦值.
如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.

(1)求直线B1C1与平面A1BC1所成角的正弦值;
(2)在线段BC1上确定一点D,使得AD⊥A1B,并求
的值.

(1)求直线B1C1与平面A1BC1所成角的正弦值;
(2)在线段BC1上确定一点D,使得AD⊥A1B,并求
