- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 写出等比数列的通项公式
- 由定义判定等比数列
- 等比数列通项公式的基本量计算
- + 由递推关系证明等比数列
- 验证是否为等比数列中的项
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分16分)设
是公差为
的等差数列,
是公比为
(
)的等比数列.记
.
(1)求证:数列
为等比数列;
(2)已知数列
的前4项分别为4,10,19,34.
① 求数列
和
的通项公式;
② 是否存在元素均为正整数的集合
,
,…,
(
,
),使得数列
,
,…,
为等差数列?证明你的结论.






(1)求证:数列

(2)已知数列

① 求数列


② 是否存在元素均为正整数的集合









(本小题满分14分)已知数列{
}满足:
,
(
);数列{
}满足:
(
).
(1)求数列{
}的通项公式及其前n项和
;
(2)证明:数列{
}中的任意三项不可能成等差数列.







(1)求数列{


(2)证明:数列{

(本小题满分12分)设数列{an}(n=1,2,3…)的前n项和Sn满足Sn=2an-a3,且a1,a2+1,a3成等差数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列
的前n项和为Tn,求Tn.
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列
