- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 写出等比数列的通项公式
- 由定义判定等比数列
- 等比数列通项公式的基本量计算
- + 由递推关系证明等比数列
- 验证是否为等比数列中的项
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
,
,
,数列
满足:
,
,
.
(Ⅰ) 求证:数列
等差数列;数列
是等比数列;(其中
);
(Ⅱ) 记
,对任意的正整数
,不等式
恒成立,求
的取值范围.







(Ⅰ) 求证:数列



(Ⅱ) 记




已知函数
定义在区间
,对任意
,恒有
成立,又数列
满足
(I)在(-1,1)内求一个实数t,使得
(II)求证:数列
是等比数列,并求
的表达式;
(III)设
,是否存在
,使得对任意
,
恒成立?若存在,求出m的最小值;若不存在,请说明理由.






(I)在(-1,1)内求一个实数t,使得

(II)求证:数列


(III)设




数列{
}(n∈N*)中,
=1,且点(
,
)在直线l:2x﹣y+1=0上.
(1)设
=
+1,求证:数列{
}是等比数列;
(2)设
=n(3
+2),求{
}的通项公式;




(1)设



(2)设



已知数列{an}的各项均为正数,其前n项的和为Sn,且对任意的m,n∈N*,
都有(Sm+n+S1)2=4a2ma2n.
(1)求
的值;
(2)求证:{an}为等比数列;
(3)已知数列{cn},{dn}满足|cn|=|dn|=an,p(p≥3)是给定的正整数,数列{cn},{dn}的前p项的和分别为Tp,Rp,且Tp=Rp,求证:对任意正整数k(1≤k≤p),ck=dk.
都有(Sm+n+S1)2=4a2ma2n.
(1)求

(2)求证:{an}为等比数列;
(3)已知数列{cn},{dn}满足|cn|=|dn|=an,p(p≥3)是给定的正整数,数列{cn},{dn}的前p项的和分别为Tp,Rp,且Tp=Rp,求证:对任意正整数k(1≤k≤p),ck=dk.