- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 写出等比数列的通项公式
- 由定义判定等比数列
- 等比数列通项公式的基本量计算
- + 由递推关系证明等比数列
- 验证是否为等比数列中的项
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
数列
的前
项和为
,
.
(
)证明数列
是等比数列,求出数列
的通项公式.
(
)设
,求数列
的前
项和
.
(
)数列
中是否存在三项,它们可以构成等比数列?若存在,求出一组符合条件的项;若不存在,说明理由.




(



(





(


设数列
的前
项和为
,若对于任意的正整数
,总存在正整数
,使得
,则称
是“
数列”.
(
)若数列
的前
项和为
,证明:
是“
数列”.
(
)设
是等差数列,其首项
,公差
,若
是“
数列”,求
的值.








(






(







已知数列
的前
项和为
满足:
(
).
(1) 求
.
(2)若
(
),
,则是否存在正整数
,当
时
恒成立?若存在,求
的最大值;若不存在,请说明理由.





(1) 求

(2)若






