- 集合与常用逻辑用语
- 函数与导数
- 利用导数证明不等式
- 利用导数研究不等式恒成立问题
- + 利用导数研究能成立问题
- 利用导数研究函数的零点
- 利用导数研究方程的根
- 利用导数研究函数图象及性质
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
满足
,且当
时,
,
时,
的最大值为
.
(1)求实数
的值;
(2)是否存在实数
使得不等式
对于
时恒成立?若存在,求出实数
的取值集合;若不存在,说明理由.







(1)求实数

(2)是否存在实数




已知函数f(x)=k[(logax)2+(logxa)2]-(logax)3-(logxa)3, g(x)=(3-k2)(logax+logxa),
(其中a>1),设t=logax+logxa.
(1)当x∈(1,a)∪(a,+∞)时,试将f(x)表示成t的函数h(t),并探究函数h(t)是否有极值;
(2)若存在x0∈(1,+∞),使f(x0)>g(x0)成立,试求k的范围.
(其中a>1),设t=logax+logxa.
(1)当x∈(1,a)∪(a,+∞)时,试将f(x)表示成t的函数h(t),并探究函数h(t)是否有极值;
(2)若存在x0∈(1,+∞),使f(x0)>g(x0)成立,试求k的范围.
定义在
上的函数
同时满足以下条件:
①
在
时取得极值;
②
是偶函数;
③
的图象在
处的切线与直线
垂直.
(1) 求函数
的解析式;
(2) 设
,若存在
, 使
, 求实数
的取值范围.


①


②

③



(1) 求函数

(2) 设



